In the present study, free vibration and buckling characteristics of a sandwich functionally graded material (FGM) plate resting on the Pasternak elastic foundation have been investigated. The formulation is based on non-polynomial higher-order shear deformation theory with inverse hyperbolic shape function. A new modified sigmoid law is presented to compute the effective material properties of sandwich FGM plate. The governing equilibrium equations have been derived using Hamilton’s principle. Non-dimensional frequencies and critical buckling loads are evaluated by considering different boundary conditions based on admissible functions satisfying the desired primary and secondary variables. Comprehensive parametric studies have been performed to analyze the influence of geometric configuration, volume fraction exponent, elastic medium parameter, and non-dimensional load parameter on the non-dimensional frequency and critical buckling load. These parametric studies have been done for various boundary conditions and different configurations of the sandwich plate. The computed results can be used as a benchmark for future comparison of sandwich S-FGM plates.
The present paper investigates the free vibration analysis for functionally graded material plates of linearly varying thickness. A non-polynomial higher order shear deformation theory is used, which is based on inverse hyperbolic shape function for the tapered FGM plate. Three different types of material gradation laws, specifically: a power (P-FGM), exponential (E-FGM), and sigmoid law (S-FGM) are used to calculate the property variation in the thickness direction of FGM plate. The variational principle has been applied to derive the governing differential equation for the plates. Non-dimensional frequencies have been evaluated by considering the semi-analytical approach viz. Galerkin-Vlasov’s method. The accuracy of the preceding formulation has been validated through numerical examples consisting of constant thickness and tapered (variable thickness) plates. The findings obtained by this method are found to be in close agreement with the published results. Parametric studies are then explored for different geometric parameters like taper ratio and boundary conditions. It is deduced that the frequency parameter is maximum for S-FGM tapered plate as compared to E- and P-FGM tapered plate. Consequently, it is concluded that the S-FGM tapered plate is suitable for those engineering structures that are subjected to huge excitations to avoid resonance conditions. In addition, it is found that the taper ratio is significantly affected by the type of constraints on the edges of the tapered FGM plate. Some novel results for FGM plate with variable thickness are also computed that can be used as benchmark results for future reference.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.