Double differential cross sections of all prominent transfer channels have been measured in the systems 338+9~ at two energies close to the nominal Coulomb barrier. In addition the fusion excitation functions of these systems have been measured below and around the barrier. The angular-and Q-distributions of the most important transfer reactions have been analysed in the framework of a simple semiclassical formalism. Particularly the two-nucleon transfer angular distributions exhibit strong multi step coupling effects which manifest themselves in reduced cross sections at large angles corresponding to close distances. From the angular distributions at forward angles, where a single step character of the transfer reaction can be assumed, approximate form factors have been extracted employing a first order perturbation theory. Within the uncertainties of a schematic coupled channels calculation the isotopic differences of the sub-barrier fusion enhancement can be understood on the basis of the isotopic differences of the transfer form factors and Q-values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.