We have discovered a general relationship between the location of trapped holes and the subsequent generation of interface states. Experimentally, we find that a hole can become an interface state, but it must first be trapped between 20 and 70 Å from the Si/SiO2 interface (near-interfacial hole trap) and then transfer to within 18 Å of the interface (interfacial trapped holes). Finally, the hole captures an electron and becomes an interface state. The transfer process between near-interfacial and interfacial trapped holes does not seem to be a simple release-capture process. Rather it appears to involve a complicated migration of the trapped hole defect towards the interface. Radiation-hardened oxides are shown to have a similar number of near-interfacial traps, but these traps are shallower than those in the soft oxides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.