1. The activation of GABAA receptors in nerve terminal membranes gates a Cl-channel.Experiments were conducted to determine how the activation of this receptor influences membrane potentials, action potentials and voltage-activated Na+ and K+ channels.2. When activation of the GABAA receptor produced only conductance changes and no voltage changes, action potentials changed only slightly. The threshold for action potential generation increased by 15%. GABA reduced the broadening of action potentials caused by high frequency stimulation by only 7%. These results indicate that membrane shunting by GABA-gated Cl-channels plays a relatively minor role.3. By recording changes in the current through K+ channels in cell-attached patches, the activation of GABAA receptors was shown to depolarize the nerve terminal membrane from rest by 14 mV. The GABAB receptor agonist baclofen produced no change in resting membrane potential as measured by this same technique. 4. In whole-terminal recordings under current clamp, with pipettes containing various Clconcentrations, the GABA-induced depolarization increased with Ec.. 90 % of the Na+ channels and activated a small amount of K+ current. This suggests that inactivation of Na+ channels makes a major contribution to the inhibition of action potentials by GABA. 8. These results are consistent with the hypothesis that GABA inhibits neurosecretion by retarding impulse propagation into the terminal arborization. These results support a depolarization block mechanism for the inhibition of secretion, in which depolarization inactivates Na+ channels sufficiently to block action potentials.
The addition of inhibitory conductance to a swelling caused simulated action potentials to fail at the swelling. Depolarizing inhibitory conductances were 1'6 times more effective than shunting inhibitory conductances in blocking propagation. 5. Inhibitory conductances within the range of experimentally observed magnitudes and localized to swellings in the observed range of sizes were too weak to block simulated action potentials. However, twofold enhancement of GABA responses by neurosteroid resulted in currents strong enough to block propagation in realistic swelling sizes. 6. GABA could block simulated propagation without neurosteroid enhancement provided that GABA was present throughout a region in the order of a few hundred micrometres.For this widespread inhibition depolarizing conductance was 2'2 times more effective than shunting conductance. 7. These results imply two modes of propagation block, one resulting from highly localized release of inhibitory transmitter under conditions potentiating GABA responses, and the other resulting from widespread release of GABA in the absence of receptor potentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.