BackgroundSeveral mechanistic models aim to explain the diversification of the multitude of endemic species on Madagascar. The island's biogeographic history probably offered numerous opportunities for secondary contact and subsequent hybridization. Existing diversification models do not consider a possible role of these processes. One key question for a better understanding of their potential importance is how they are influenced by different environmental settings. Here, we characterized a contact zone between two species of mouse lemurs, Microcebus griseorufus and M. murinus, in dry spiny bush and mesic gallery forest that border each other sharply without intermediate habitats between them. We performed population genetic analyses based on mtDNA sequences and nine nuclear microsatellites and compared the results to a known hybrid zone of the same species in a nearby wide gradient from dry spiny bush over transitional forest to humid littoral forest.ResultsIn the spiny-gallery system, Microcebus griseorufus is restricted to the spiny bush; Microcebus murinus occurs in gallery forest and locally invades the dryer habitat of its congener. We found evidence for bidirectional introgressive hybridization, which is closely linked to increased spatial overlap within the spiny bush. Within 159 individuals, we observed 18 hybrids with mitochondrial haplotypes of both species. Analyses of simulated microsatellite data indicate that we identified hybrids with great accuracy and that we probably underestimated their true number. We discuss short-term climatic fluctuations as potential trigger for the dynamic of invasion and subsequent hybridization. In the gradient hybrid zone in turn, long-term aridification could have favored unidirectional nuclear introgression from Microcebus griseorufus into M. murinus in transitional forest.ConclusionsMadagascar's southeastern transitional zone harbors two very different hybrid zones of mouse lemurs in different environmental settings. This sheds light on the multitude of opportunities for the formation of hybrid zones and indicates an important influence of environmental factors on secondary contact and hybridization. Our findings suggest that hybridization could enhance the adaptability of mouse lemurs without necessarily leading to a loss of distinctiveness. They point to a potential role of hybridization in Madagascar's diversification history that requires further investigation.
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC variability and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene variability gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa ( Odoribacter , Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC variability and microbial flora as contributing factors of parasite infection.
Until recently, the study of major histocompability complex (MHC) mediated immunity has focused on the direct link between MHC diversity and susceptibility to parasite infection. However, MHC genes can also influence host health indirectly through the sculpting of the bacterial community that in turn shape immune responses. We investigated the links between MHC class I and II gene diversity gut microbiome diversity and micro- (adenovirus, AdV) and macro- (helminth) parasite infection probabilities in a wild population of non-human primates, mouse lemurs of Madagascar. This setup encompasses a plethora of underlying interactions between parasites, microbes and adaptive immunity in natural populations. Both MHC classes explained shifts in microbiome composition and the effect was driven by a few select microbial taxa. Among them were three taxa (Odoribacter, Campylobacter and Prevotellaceae-UCG-001) which were in turn linked to AdV and helminth infection status, correlative evidence of the indirect effect of the MHC via the microbiome. Our study provides support for the coupled role of MHC diversity and microbial flora as contributing factors of parasite infection.
Dietary characteristics and environmental variables are important selective factors directing ecological diversification in rodents. On Madagascar, the introductions and spread of the commensal black rat (Rattus rattus) can be seen as example cases to study dietary niche occupation and dietary adaptation in an insular environment. We investigate how tooth wear as a measure of dietary adaptation of black rats differs between four distinct habitats (village, manioc fields, spiny forest, and rainforest) with different dietary resources. We use the 3D surface texture analysis (3DST, using 30 parameters according to ISO 25178) as a measure of dietary abrasiveness. 3DST is applied on the occlusal surface of the upper first molar of 37 black rat specimens. The rainforest sample displays less rough and less voluminous surface textures compared to the village samples as indicated by smaller values for height parameters (Sa, Sp, Sq), inverse areal material ratio (Smc), and volume parameters (Vm, Vmc, Vmp, Vv, and Vvc). We therefore rank sampling areas from highest to lowest abrasiveness (village>manioc fields/spiny forest>rainforest). The rats from villages and rainforest differ to such an extent that one could have interpreted them to belong to different species. This indicates a high degree of variability in terms of ingesta abrasiveness. Furthermore, the pronounced difference between rats from human habitations compared to rats from associated fields or natural vegetation is interpreted to clearly indicate shifts in dietary niche occupation in relation to human impact.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.