Abstract. The Intergovernmental Technical Panel on Soils has completed the first State of the World's Soil Resources Report. Globally soil erosion was identified as the gravest threat, leading to deteriorating water quality in developed regions and to lowering of crop yields in many developing regions. We need to increase nitrogen and phosphorus fertilizer use in infertile tropical and semi-tropical soils – the regions where the most food insecurity among us are found – while reducing global use of these products overall. Stores of soil organic carbon are critical in the global carbon balance, and national governments must set specific targets to stabilize or ideally increase soil organic carbon stores. Finally the quality of soil information available for policy formulation must be improved – the regional assessments in the State of the World's Soil Resources Report frequently base their evaluations on studies from the 1990s based on observations made in the 1980s or earlier.
Soil organic carbon (SOC) concentration is a useful soil property with which to guide agricultural applications of chemical inputs. To enable this, simple, accurate, rapid and inexpensive methods are needed to produce maps of surface SOC concentrations. Researchers have investigated estimates of soil surface properties from remotely sensed information as a means of rapidly quantifying and monitoring some surface soil properties, such as SOC. The objective of this paper is to review the potential and limitations of remotely sensed data for mapping and evaluating SOC. Several statistical methods including simple regression models, the 'soil line' approach, principal component analysis and geostatistics have been applied to data to investigate the accuracy of such estimates. A review of the literature shows that predictive equations are not universal and require new regression models for every scene. An important benefit of remotely sensed data is to suggest a sampling strategy that can lead to improved representation of spatial heterogeneity in SOC.
Abstract. The Intergovernmental Technical Panel on Soils has completed the first State of the World's Soil Resources report. Globally soil erosion was identified as the gravest threat, leading to deteriorating water quality in developed regions and to lowering of crop yields in many developing regions. We need to increase nitrogen and phosphorus fertilizer use in infertile tropical and semi-tropical soils – the regions where the most food insecure among us are found – while reducing global use of these products overall. Stores of soil organic carbon are critical in the global carbon balance, and national governments must set specific targets to stabilize or ideally increase soil organic carbon stores. Finally the quality of soil information available for policy formulation must be improved – the regional assessments in the SWSR report frequently base their evaluations on studies from the 1990s based on observations made in the 1980s or earlier.
ABSTRACT:Tabriz is the largest industrial city in North West of Iran and it is developing rapidly. A large proportion of water requirements for this city are supplied from dams. In this research, groundwater quality assessed through sampling 70 wells in Tabriz and its rural areas. The purposes of this study are: (1) specifying spatial distribution of groundwater quality parameters such as Chloride, Electrical Conductivity (EC), pH, hardness and sulphate (2) mapping groundwater quality for drinking purpose by employing Analytic Hierarchy Process (AHP) method in the study area using GIS and Geosatistics. We utilized an interpolation technique of ordinary kriging for generating thematic map of each parameter. The final map indicates that the groundwater quality esaeicni from North to South and from West to East of the study area. The areas located in Center, South and South West of the study area have the optimum quality for drinking purposes which are the best locations to drill wells for supplying water demands of Tabriz city. In critical conditions, the groundwater quality map as a result of this research can be taken into account by East Azerbaijan Regional Water Company as decision support system to drill new wells or selecting existing wells to supply drinking water to Tabriz city.
Abstract. Modeling of Near-Surface Temperature Lapse Rate (NSTLR) is very important in various environmental applications. The Land Surface Temperature (LST) is influenced by many properties and conditions including surface biophysical and topographic characteristics. Some researches have considered the LST - Digital Elevation Model (DEM) feature space to model NSTLR. However, the influence of detailed surface characteristics is rare. This study investigated the impact of surface characteristics on the LST-DEM feature space for NSTLR modeling. A set of remote sensing data including Landsat 8 images, MODIS products, and surface features including DEM and land use of the Balikhli-Chay on 01/07/2018, 18/08/2018 and 03/09/2018 were collected and used in this study. First, Split Window (SW) algorithm was used to estimate LST, and spectral indices were employed to model surface biophysical characteristics. Owing to the impact of surface biophysical and topographic characteristics on the LST-DEM feature space, the NSTLR was calculated for different classes of surface biophysical characteristics, land use, and solar local incident angle. The modeled NSTLR values based on the LST-DEM feature space on 01/07/2018, 18/08/2018 and 03/09/2018 were 8.5, 1.5 and 2.4 °C Km−1; respectively. The NSTLR in different classes of surface biophysical characteristics, land use type and topographical parameters were variable between 0.5 to 14 °C Km−1. This clearly showed the dependence of NSTLR on topographic and biophysical conditions. This provides a new way of calculating surface characteristic specific NSTLR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.