Chloropentafluorobenzene (CPFB) has been identified as a can didate simulant for nonpersistent chemical warfare agents. Acute toxicity studies have shown that CPFB has limited adverse ef fects on laboratory animals. A 21-day inhalation study of rats and mice to 2.5, 0.8, and 0.25 mg CPFB/liter resulted in re duced weight gain in male and female rats exposed at the high concentration only and identified the liver as a potential target organ. This multiconcentration inhalation study was designed to detect a no-observable-effect level associated with repeated expo sure to CPFB. Male and female rats and mice were exposed to 250, 50, or 10 mg CPFB/m3 (0.25, 0.05, or 0.01 mg CPFB/li ter) for 13 weeks. No treatment-related effects on body weight, clinical chemistries, mortality, absolute or relative organ weight or histopathology were noted.
A low-temperature version of MIL-H-83282 (LT 83282) is a candidate hydraulic fluid to be used as a replacement for the current low-temperature fluid used on Strategic Air Command aircraft. A single neat dose of 0.1 mL LT 83282 into New Zealand White (NZW) rabbit eyes resulted in slight conjunctival irritation for up to 24 hr after treatment in two of nine rabbits. Rinsing the eyes after treatment appeared beneficial. A single treatment of 0.5 mL neat LT 83282 to rabbit skin produced no irritation. A total of 40% of the guinea pigs receiving repeated dermal application of the fluid demonstrated a positive sensitization response. A single oral dose of 5 g LT 83282/kg body weight given to five male and five female Fischer 344 (F-344) rats and a single dermal application of 2 g LT 83282/kg body weight applied to five male and five female NZW rabbits resulted in no deaths. Inhalation exposures to aerosol concentrations of LT 83282 resulted in an LC50 of 2.13 and 1.50 mg/L for male and female F-344 rats, respectively. No clinical signs of acute delayed neurotoxicity were observed in hens twice dosed at limit levels (5 g/kg) and observed for 21 days.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.