Free-standing powder of zinc sulphide quantum particles has been synthesized using a chemical route. X-ray diffraction analysis shows that the diameter of the particles is ∼21±2 Å which is smaller than the Bohr exciton diameter for zinc sulphide. UV absorption shows an excitonic peak centered at ∼300 nm corresponding to an energy gap of 4.1±0.1 eV. These particles show a luminescence band at ∼424 nm. The quantum particles could be doped with copper during synthesis without altering the UV absorption or x-ray diffraction pattern. However, doping shifted the luminescence to 480 nm, green wavelength in the visible region.
La 2 NiMnO 6 (LNMO) was prepared by a combustion method followed by heating at high temperature. Subsequently, the preformed LNMO was annealed in air, oxygen, or N 2 atmosphere and characterized by powder x-ray diffraction (XRD), neutron diffraction, superconducting quantum interference device magnetometry, and dielectric analysis. Structural studies by XRD and neutron diffraction revealed the coexistence of partially cation disordered monoclinic (31%) and rhombohedral (69%) phases in the sample annealed in air. However, the sample annealed in oxygen shows about 50:50% of monoclinic and rhombohedral phases. Relaxor-like behavior with relative permittivity of the order of 10 4 was observed in the sample annealed in air, while relative permittivity decreases to about 200 in samples annealed in oxygen atmosphere. The magnetic properties indicate a well-defined ferromagnetic phase in the oxygen-annealed sample compared to a feeble ferromagnetic signature in the air-annealed one. The dielectric and ferromagnetism of LNMO samples have been related to formation and annihilation of oxygen vacancies.
In this communication, we report the preparation and properties of nano-CoFe2O4 by gel combustion in presence of KCl and subsequent heat treatments. The products were characterized by X-ray diffraction, Infrared spectroscopy, and Mössbauer Spectroscopy. Spinel type structure with all Fe in 3+ oxidation states was confirmed from the XRD and Mossbauer spectroscopy. The average crystallite sizes of the studied samples were about 6 and 50 nm. Low temperature magnetic and dielectric properties of the samples were studied by superconducting quantum interference device magnetometry and ac-impedance spectroscopy. The field and temperature dependent magnetization studies indicated superparamagnetic nature for 6 nm sample and ferromagnetic nature for 50 nm sample. The temperature-dependent dielectric properties measured over a wide range of frequencies indicated an increasing trend of dielectric permittivity with the decrease in crystallite size. Variable range polaron hopping conduction was observed in both samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.