The plasma electron density ne in a symmetric confined capacitive-coupled plasma processing tool containing Ar∕O2∕C4F8 gas mixtures is studied as a function of two, combined radio frequency (2MHz+27MHz) powers. For measuring ne we have used a floating hairpin resonance probe. The results show a linear increase in ne with 27MHz power. Also the density is higher with an increase in 2MHz power, in contrast with published particle-in-cell simulation results in argon where the plasma density decreased with increases in low frequency voltage, for fixed high frequency current [P. C. Boyle et al., J. Phys. D 37, 697 (2004)]. Analyzing the relative phase between radio frequency current and voltage, we observe slightly lower 2MHz phase shifts at higher 2MHz voltage, which is attributed to an increase in the real component of the current through the sheath. This is possible due to the increase in secondary electron emissions arising from ion bombardment, which is favored by an increase in 2MHz voltage. We therefore conclude that the secondary electrons could play an important role in the discharge process.
We present an automated hairpin resonance probe for obtaining time-varying plasma electron density in a pulsed-magnetron discharge, operated with a 13.56 MHz radio-frequency source. When the resonator is placed in plasma, its characteristic resonance frequency in vacuum shifts to a higher value. From the frequency shifts, electron density is easily determined. By applying a fixed microwave frequency, the probe immersed in plasma resonates only at a specific time of the pulse waveform. At a different time of the pulse, the probe resonates at a different frequency. The procedure is automated using a Labview™ program, which increments the applied microwave frequency in small steps of the prescribed value and reads the corresponding resonance peak from an oscilloscope. The spatial and temporal electron density measured using this technique shows a sharp drop in density during the first few microseconds in the on-phase, followed by an increase in density as the discharge develops in the steady-state on-phase. The off-phase shows that decay in electron density at different rates is faster in the region where the magnetic field lines intersect the target. A quantitative model is described to explain different features observed in the experiment.
The temporal evolution of the plasma potential, V p , in a pulsed dc magnetron plasma has been determined using the emissive probe technique. The discharge was operated in the 'asymmetric bi-polar' mode, in which the discharge voltage changes polarity during part of the pulse cycle. The probe measurements, with a time-resolution of 20 ns or better, were made along a line above the racetrack, normal to the plane of the cathode target, for a fixed frequency (100 kHz), duty cycle (50%), argon pressure (0.74 Pa) and discharge power (583 W). At all the measured positions, V p was found to respond to the large and rapid changes in the cathode voltage, V d , during the different phases of the pulse cycle, with V p always more positive than V d . At a typical substrate position (>80 mm from the target), V p remains a few volts above the most positive surface in the discharge at all times. In the 'on' phase of the pulse, the measurements show a significant axial electric field is generated in the plasma, with the plasma potential dropping by a total of about 30 V over a distance of 70 mm, from the bulk plasma to a position close to the beginning of the cathode fall. This is consistent with measurements made in the dc magnetron. During the stable 'reverse' phase of the discharge, for distances greater than 18 mm from the target, the axial electric field is found to collapse, with V p elevated uniformly to about 3 V above V d . Between the target and this field-free region an ion sheath forms, and the current flowing to the target is still an ion current in this 'reverse' period. During the initial 200 ns of the voltage 'overshoot' phase (between 'on' and 'reverse' phases), V d reached a potential of +290 V; however, close to the target, V p was found to attain a much higher value, namely +378 V. Along the line of measurement, the axial electric field reverses in direction in this phase, and an electron current of up to 9 A flows to the target.The spatial and temporal measurements of V p presented here confirm a simple picture of the evolution of V p , predicted from previously made time-resolved mass spectroscopic measurements of the ionic component in the pulsed magnetron. This paper describes the development and characteristics of the emissive probe technique for such fast measurements, together with implications for the form of the measured transient potential profiles on the operation of the magnetron discharge. In particular, it addresses the charged particle drifts and the potential for sputtering of the walls and the anode by ion impact.
Articles you may be interested inFlux and energy analysis of species in hollow cathode magnetron ionized physical vapor deposition of copper Rev. Sci. Instrum. 81, 123502 (2010); 10.1063/1.3504371 13.56 MHz radio frequency plasma properties on hemispheric electrodes and diamond-like carbon films deposition on three-dimensional polyurethane diaphragms
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.