The electrical properties of thin nitrided oxide (∼100 Å) formed by rapid thermal nitridation (RTN) in pure NH3 have been studied. It is found that the current-voltage characteristic of RTN oxides follows a Fowler–Nordheim tunneling behavior with modifications caused by electron trapping processes at the oxide surface and interface. The trapping density is dependent on the RTN conditions. At the interface, both fixed charge (Nf) and interface state (Dit) densities exhibit turnaround phenomena when the RTN process proceeds. The maximum values of Nf and Dit at the turnaround points are lower for the higher temperature RTN, suggesting a viscous flow related strain relieving mechanism associated with RTN of thin oxides. Films with superior endurance behavior (QBD=20.4 C/cm2 compared with QBD=5.1 C/cm2 of thermal oxide under 10 mA/cm2 constant current stress) have been obtained by RTN at 1000 °C, 10 s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.