Copper sulphide quantum dots were synthesized by a simple chemical route using ammonia (aq.) as a complexing agent in PVA matrix. Copper acetate monohydrate and thiourea were used as precursors. The particle sizes as obtained from XRD results were found to be in good agreement with those of HRTEM. The UV-Vis. absorption and PL emission spectra exhibited a systematic blue shift of absorption and emission respectively confirming quantum confinement effect in the synthesized quantum dots. The band gap as estimated from Tauc-plot increased from 3.26eV to 3.92eV with change of concentration of complexing agent. The FTIR spectra exhibited Cu-S stretching peaks characteristic of CuS. Ionic contributions of the electrolytic ionic CuS solution as measured by a standard conductivity cell clearly showed the semiconducting behavior of the product material. The synthesized material may be exploited in fabrication of an optoelectronic device in UV-blue region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.