An image acquired by a camera consists of measured intensity values which are related to scene radiance by a function called the camera response function. Knowledge of this response is necessary for computer vision algorithms which depend on scene radiance. One way the response has been determined is by establishing a mapping of intensity values between images taken with different exposures. We call this mapping the intensity mapping function. In this paper, we address two basic questions. What information from a pair of images taken at different exposures is needed to determine the intensity mapping function? Given this function, can the response of the camera and the exposures of the images be determined? We completely determine the ambiguities associated with the recovery of the response and the ratios of the exposures. We show all methods that have been used to recover the response break these ambiguities by making assumptions on the exposures or on the form of the response. We also show when the ratio of exposures can be recovered directly from the intensity mapping, without recovering the response. We show that the intensity mapping between images is determined solely by the intensity histograms of the images. We describe how this allows determination of the intensity mapping between images without registration. This makes it possible to determine the intensity mapping in sequences with some motion of both the camera and objects in the scene.
We present a method for controlling the appearance of an arbitrary 3D object using a projector and a camera. Our goal is to make one object look like another by projecting a carefully determined compensation image onto the object. The determination of the appropriate compensation image requires accounting for spatial variation in the object's reflectance, the effects of environmental lighting, and the spectral responses, spatially varying fall-offs, and non-linear responses in the projectorcamera system. Addressing each of these effects, we present a compensation method which calls for the estimation of only a small number of parameters, as part of a novel off-line radiometric calibration. This calibration is accomplished by projecting and acquiring a minimal set of 6 images, irrespective of the object. Results of the calibration are then used on-line to compensate each input image prior to projection. Several experimental results are shown that demonstrate the ability of this method to control the appearance of everyday objects. Our method has direct applications in several areas including smart environments, product design and presentation, adaptive camouflages, interactive education and entertainment.
Imaging of objects under variable lighting directions is an important and frequent practice in computer vision, machine vision, and image-based rendering. Methods for such imaging have traditionally used only a single light source per acquired image. They may result in images that are too dark and noisy, e.g., due to the need to avoid saturation of highlights. We introduce an approach that can significantly improve the quality of such images, in which multiple light sources illuminate the object simultaneously from different directions. These illumination-multiplexed frames are then computationally demultiplexed. The approach is useful for imaging dim objects, as well as objects having a specular reflection component. We give the optimal scheme by which lighting should be multiplexed to obtain the highest quality output, for signal-independent noise. The scheme is based on Hadamard codes. The consequences of imperfections such as stray light, saturation, and noisy illumination sources are then studied. In addition, the paper analyzes the implications of shot noise, which is signal-dependent, to Hadamard multiplexing. The approach facilitates practical lighting setups having high directional resolution. This is shown by a setup we devise, which is flexible, scalable, and programmable. We used it to demonstrate the benefit of multiplexing in experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.