In this study, host-specific forms of the blast pathogen Magnaporthe oryzae in sub-Saharan Africa (SSA) were characterised from distinct cropping locations using a combination of molecular and biological assays. Finger millet blast populations in East Africa revealed a continuous genetic variation pattern and lack of clonal lineages, with a wide range of haplotypes. M. oryzae populations lacked the grasshopper (grh) element (96%) and appeared distinct to those in Asia. An overall near equal distribution (47-53%) of the mating types MAT1-1 and MAT1-2, high fertility status (84-89%) and the dominance of hermaphrodites (64%) suggest a strong sexual reproductive potential. Differences in pathogen aggressiveness and lack of cultivar incompatibility suggest the importance of quantitative resistance. Rice blast populations in West Africa showed a typical lineage-based structure. Among the nine lineages identified, three comprised ~90% of the isolates. Skewed distribution of the mating types MAT1-1 (29%) and MAT1-2 (71%) was accompanied by low fertility. Clear differences in cultivar compatibility within and between lineages suggest R gene-mediated interactions. Distinctive patterns of genetic diversity, sexual reproductive potential and pathogenicity suggest adaptive divergence of host-specific forms of M. oryzae populations linked to crop domestication and agricultural intensification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.