Numerical analysis of three-dimensional MHD flow of Casson nanofluid past an Numerical analysis of three-dimensional MHD flow of Casson nanofluid past an exponentially stretching sheet exponentially stretching sheet
This paper aims to investigate the influence of chemical reaction and the combined effects of internal heat generation and a convective boundary condition on the laminar boundary layer MHD heat and mass transfer flow over a moving vertical flat plate. The lower surface of the plate is in contact with a hot fluid while the stream of cold fluid flows over the upper surface with heat source and chemical reaction. The basic equations governing the flow, heat transfer, and concentration are reduced to a set of ordinary differential equations by using appropriate transformation for variables and solved numerically by Runge-Kutta fourth-order integration scheme in association with shooting method. The effects of physical parameters on the velocity, temperature, and concentration profiles are illustrated graphically. A table recording the values of skin friction, heat transfer, and mass transfer at the plate is also presented. The discussion focuses on the physical interpretation of the results as well as their comparison with previous studies which shows good agreement as a special case of the problem.
In this communication, the effect of the addition of the copper (Cu), aluminum oxide (Al2O3), and single-wall carbon nanotubes (SWCNTs) metallic nanoparticles on the magnetohydrodynamics (MHD) water-based flow over a porous elastic surface is explored. The objective of the work is to include the radiative effect that interacts with the metallic nanoparticles due to permeability of the surface. The significance of this study stems from the fact that the design of various equipment, such as nuclear power plants, gas turbines, propulsion devices for aircraft, and missiles, is dependent on radiative heat transfer. To formulate the mathematical modelling, similarity transformations were used, and nonlinear differential equations were obtained. To solve the formulated nonlinear differential equations, the Runge–Kutta fourth-order numerical scheme is used in conjunction with the shooting technique. The behavior of velocity profile and temperature profile has been discussed in detail and also engineering quantities such as Nusselt and Sherwood number which are calculated. Furthermore, the addition of metallic nanoparticles enhanced the nanofluid properties for energy transfer enrichment and found many applications in various fields of science and technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.