β-Ga2O3 nanostructures were synthesized via vapor transport method on gold coated Silicon substrate in N2 ambient. The as synthesized products were investigated by grazing incident X-ray diffraction, scanning electron microscopy and photoluminescence (PL) spectroscopy. It is shown that the intensity of photoluminescence from the ensemble of β-Ga2O3 nanostructures in oxygen gas ambience is correlated with the oxygen pressure through the Langmuir equation. This correlation is found to be reversible and reproducible. This phenomenon, which was not observed in the bulk β-Ga2O3 single crystal, is attributed to the oxygen related shallow trap surface states of the nanostructures with energies at about 4.2 eV above the valance band. Based on the changes in the PL intensity with the oxygen pressures, a possible mechanism for the observed photoluminescence is suggested. The present results provide a route for room-temperature response of oxygen in the gallium oxide nanostructures.
In this work three different growth methods have been used to grow β-Ga2O3 nanostructures. The nanostructures were characterized by Grazing Incident X-Ray Diffraction, Scanning Electron Microscopy, Transmission Electron Microscopy and Photoluminescence Spectroscopy. Photoluminescence spectra for all the samples of β-Ga2O3 nanostructures exhibit an UV and blue emission band. The relative intensity of UV and blue luminescence is strongly affected by the surface defects present on the nanostructures. Our study shows that Photoluminescence intensity of UV and blue luminescence can be reliably used to determine the quality of β-Ga2O3 nanostructures. Further the work opens up the possibility of using UV excitation and subsequent Photoluminescence analysis as a possible means for oxygen sensing. The Photoluminescence mechanism in β-Ga2O3 nanostructures is also discussed.
A multilayer structure consisting of alternate layers of W and B4C has been deposited using a magnetron sputtering system. The structure of the as-deposited and vacuum-annealed W/B4C multilayer sample has been characterized using grazing incidence x-ray reflectivity, grazing incidence diffraction, and the normal incidence reflectivity has been measured using synchrotron radiation. A two-layer model consisting of tungsten and boron carbide is presented. The multilayer structure was found to be stable after 800°C annealing. Grazing incidence x-ray diffraction measurements suggested that W is polycrystalline with small grain size. No signature of tungsten carbide or tungsten boride formation could be observed during the annealing treatments. A near normal incidence soft x-ray reflectivity (SXRR) of ~8.3% was obtained at 6.8 nm wavelength. A little drop (~1%) in SXRR after 800°C annealing suggested that there were no compositional changes within the layers during the annealing treatments.
For small samples, the modification of the X-ray reflectivity (XRR) profile by the geometric factors due to the profile and size of the beam and the size of the sample is significant. These geometric factors extend the spill-over angle, which is often greater than the critical angle for small samples. To separate the geometric factors, it is necessary to know the spill-over angle. Since the geometric factors are smoothly varying functions and extend beyond the critical angle, it is impossible to determine the spill-over angle from the XRR profile of small samples. It is shown that the spill-over angle can be determined by comparing the normal XRR profile of a small sample with the XRR profile taken with a surface-contact knife edge on the same sample. Thus, a procedure has been developed for data reduction for small samples and validated with suitable experiments. Unlike the methods used hitherto, which have drawbacks, this is a self-consistent method for data reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.