In this study we report the enhancement of UV photodetection and wavelength tunable light induced NO gas sensing at room temperature using Au-ZnO nanocomposites synthesized by a simple photochemical process. Plasmonic Au-ZnO nanostructures with a size less than the incident wavelength have been found to exhibit a localized surface plasmon resonance (LSPR) that leads to a strong absorption, scattering and local field enhancement. The photoresponse of Au-ZnO nanocomposite can be effectively enhanced by 80 times at 335 nm over control ZnO. We also demonstrated Au-ZnO nanocomposite's application to wavelength tunable gas sensor operating at room temperature. The sensing response of Au-ZnO nancomposite is enhanced both in UV and visible region, as compared to control ZnO. The sensitivity is observed to be higher in the visible region due to the LSPR effect of Au NPs. The selectivity is found to be higher for NO gas over CO and some other volatile organic compounds (VOCs), with a minimum detection limit of 0.1 ppb for Au-ZnO sensor at 335 nm.
Silicon compatible wafer scale MoS2 heterojunctions are reported for the first time using colloidal quantum dots. Size dependent direct band gap emission of MoS2 dots are presented at room temperature. The temporal stability and decay dynamics of excited charge carriers in MoS2 quantum dots have been studied using time correlated single photon counting spectroscopy technique. Fabricated n-MoS2/p-Si 0D/3D heterojunctions exhibiting excellent rectification behavior have been studied for light emission in the forward bias and photodetection in the reverse bias. The electroluminescences with white light emission spectra in the range of 450–800 nm are found to be stable in the temperature range of 10–350 K. Size dependent spectral responsivity and detectivity of the heterojunction devices have been studied. The peak responsivity and detectivity of the fabricated heterojunction detector are estimated to be ~0.85 A/W and ~8 × 1011 Jones, respectively at an applied bias of −2 V for MoS2 QDs of 2 nm mean diameter. The above values are found to be superior to the reported results on large area photodetector devices fabricated using two dimensional materials.
Highly luminescent MoS 2 nanocrystals (NCs) with controlled size distribution have been achieved using a simple yet inexpensive and impurity free sono-chemical exfoliation method followed by gradient centrifugation. The size of nanocrystals could be varied within the diameter range of ∼4 to 70 nm. Typical MoS 2 nanocrystal has exhibited high crystalline quality with 0.25 nm lattice fringe spacing for (002) planes for 2-H phase of MoS 2 . Raman spectra has revealed that both out-of-plane and in-plane vibrational modes are stiffen due to the edge effect of MoS 2 NCs. The size tunable optical properties of MoS 2 NCs have been investigated by optical absorption and photoluminescence spectroscopy. The coexistence of direct band gap emission from 2D MoS 2 nanosheets and quantum confined nanocrystals has been achieved. A strong and tunable photoluminescence (560−518 nm) emission due to the quantum size effect of tiny NCs below a critical dimension is reported for the first time. The photocurrent measurement of the Au/MoS 2 −NCs/Au junction has been performed at room temperature to investigate the optical responsivity and switching characteristics, demonstrating the potential of MoS 2 nanocrystals for next generation photonic devices.
With the widespread use of wearable electronics, portable and flexible energy harvesting devices with a high sensitivity have attracted considerable interest. Herein, an ultrasensitive piezoelectric nanogenerator (PNG) made of a few layers of 2 D‐MoS2‐incorporated electrospun poly(vinlydine fluoride) (PVDF) nanofiber webs (NFW) is described for the first time. As a result of the semiconducting properties and piezoelectric functionalities of 2 D‐MoS2, the resultant piezoelectric performance of PNG can be modulated, which leads to a material suitable for wearable electronics to power devices and to fabricate self‐powered biomedical nanosensors for diagnosis, such as heartbeat monitoring, pressure mapping from footsteps, and speech signal abnormality. We have demonstrated that our PNG has a 70 times improvement in acoustic sensitivity than nanosensors made of neat PVDF NFW and are able to charge a capacitor quickly (e.g., 9 V is charged within 44 s). As a result of the ultrafast charging performance and external low‐impact detection capability of 2 D‐MoS2‐modulated PNG, this paves the way to design cost‐effective self‐powered wearable electronics and robotics.
We report the fabrication and optical response of boron-doped single silicon nanowire-based metal-semiconductor-metal photodetector. Typical single nanowire devices with diameter of ∼80-100 nm and electrode spacing of ∼1 μm were made using electron-beam lithography from nanowires, grown by a metal-assisted chemical etching process. A high responsivity, of the order of 10(4) A W(-1), was observed even at zero bias in a single nanowire photodetector with peak responsivity in the near-infrared region. The responsivity was found to increase with increasing bias and decreasing nanowire diameter. Finite element based optical simulation was proposed to explain the diameter dependent performance of a single nanowire. The observed photoresponse is sensitive to the polarization of exciting light source, allowing the device to act as a polarization-dependent near-infrared photodetector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.