In this study we report the enhancement of UV photodetection and wavelength tunable light induced NO gas sensing at room temperature using Au-ZnO nanocomposites synthesized by a simple photochemical process. Plasmonic Au-ZnO nanostructures with a size less than the incident wavelength have been found to exhibit a localized surface plasmon resonance (LSPR) that leads to a strong absorption, scattering and local field enhancement. The photoresponse of Au-ZnO nanocomposite can be effectively enhanced by 80 times at 335 nm over control ZnO. We also demonstrated Au-ZnO nanocomposite's application to wavelength tunable gas sensor operating at room temperature. The sensing response of Au-ZnO nancomposite is enhanced both in UV and visible region, as compared to control ZnO. The sensitivity is observed to be higher in the visible region due to the LSPR effect of Au NPs. The selectivity is found to be higher for NO gas over CO and some other volatile organic compounds (VOCs), with a minimum detection limit of 0.1 ppb for Au-ZnO sensor at 335 nm.
We report the fabrication and optical response of boron-doped single silicon nanowire-based metal-semiconductor-metal photodetector. Typical single nanowire devices with diameter of ∼80-100 nm and electrode spacing of ∼1 μm were made using electron-beam lithography from nanowires, grown by a metal-assisted chemical etching process. A high responsivity, of the order of 10(4) A W(-1), was observed even at zero bias in a single nanowire photodetector with peak responsivity in the near-infrared region. The responsivity was found to increase with increasing bias and decreasing nanowire diameter. Finite element based optical simulation was proposed to explain the diameter dependent performance of a single nanowire. The observed photoresponse is sensitive to the polarization of exciting light source, allowing the device to act as a polarization-dependent near-infrared photodetector.
Semiconductor quantum dots are capable of emitting polarization entangled photon pairs with ultralow multipair emission probability even at maximum brightness. Using a quantum dot source with a fidelity as high as 0.987(8), we implement here quantum key distribution with an average quantum bit error rate as low as 1.9% over a time span of 13 hours. For a proof of principle, the key generation is performed with the BBM92 protocol between two buildings, connected by a 350-m-long fiber, resulting in an average raw (secure) key rate of 135 bits/s (86 bits/s) for a pumping rate of 80 MHz, without resorting to time- or frequency-filtering techniques. Our work demonstrates the viability of quantum dots as light sources for entanglement-based quantum key distribution and quantum networks. By increasing the excitation rate and embedding the dots in state-of-the-art photonic structures, key generation rates in the gigabits per second range are in principle at reach.
p-Si/n-CdS radial heterojunction nanowires have been grown by pulse laser deposition of CdS on vertically aligned Si nanowires fabricated using a room temperature wafer-scale etching of p-type Si. Temperature-dependent photoluminescence characteristics have been studied in detail in the blue−green−red regions from these p-Si/n-CdS core−shell nanowires. The photocurrent spectra of the nanowire heterojunctions have been investigated at room temperature to study the spectral responsivity and detectivity of the core−shell nanowire diodes. The peak responsivity (1.37 A/W) and detectivity (4.39 × 10 11 cm Hz 1/2 /W) at −1 V show the potential of the nanoscaled devices for the high efficiency photodetectors in the visible− near-infrared spectrum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.