A reliable energy storage ecosystem is imperative for a renewable energy future, and continued research is needed to develop promising rechargeable battery chemistries. To this end, better theoretical and experimental understanding of electrochemical mechanisms and structure-property relationships will allow us to accelerate the development of safer batteries with higher energy densities and longer lifetimes. This Review discusses the interplay between theory and experiment in battery materials research, enabling us to not only uncover hitherto unknown mechanisms but also rationally design more promising electrode and electrolyte materials. We examine specific case studies of theory-guided experimental design in lithium-ion, lithium-metal, sodium-metal, and all-solid-state batteries. We also offer insights into how this framework can be extended to multivalent batteries. To close the loop, we outline recent efforts in coupling machine learning with high-throughput computations and experiments. Last, recommendations for effective collaboration between theorists and experimentalists are provided.
The electrode–electrolyte interface is one of the major components enabling Li‐ion batteries (LIBs) to function reversibly. Often, the solid–electrolyte interphase (SEI) at the anode is regarded as the key interface that determines the cycle life, capacity fade, and overall safety of batteries. There are a plethora of SEI literatures that exist; however, the cathode–electrolyte interphase (CEI) remains relatively unexplored. Unlike in the case of SEI, a detailed understanding of CEI formation and its association with battery performance is not present. This review gives insight into the recent progress in understanding the CEI in LIBs. Though there is a relative dearth of literature, the CEI is generally considered as a heterogeneous multicomponent film formed due to the decomposition of electrolyte at the cathode surface. Besides understanding the thermodynamic properties and relevant kinetic reactions, one of the main challenges lies in developing and stabilizing the CEI layer due to its complex structural composition. Extensive research efforts to engineer a stable CEI are reviewed, including the use of electrolyte additives, artificial engineering, and heteroatom doping of cathode. Furthermore, promising characterization techniques and future outlook in forming a robust CEI for both existing LIB and post‐LIB systems are highlighted.
Bio-based materials open a new world of possibilities in every field due to its independence from the petrochemical origin. Moreover, concerns on environmental footprints and toxicity of synthetic adhesives made scientists investigate the utilization of biomaterials for wood adhesives. In this perspective, nanocellulose as a sustainable and cheap bio-nanomaterial provides a better alternative to conventional adhesive based on formaldehyde-containing condensation resins. Property of nanocellulose to act as both binders and as structural reinforcement in various adhesive systems adds to its potential. Besides by reducing the harmful emission of formaldehyde, it also can improve the mechanical properties and enhance performance of adhesives. This review paper aims to point out the potential application of nanocellulose based wood adhesives compared to petroleum-based conventional systems beyond renewability. New functionalities through structural modification in nanocellulose could bring a replacement with the synthetic adhesive systems which will play a significant role in future bio-economy.
Bio-based nanomaterial is more attractive, due to its abundance, eco-friendliness and sustainability, when compared to the non-renewable toxic petrochemicals used in the wood adhesive sector. Recent studies on the formaldehyde emission by petrochemical binders in wood adhesives have attracted scientists for the research in biomaterial-based binders. In this aspect nanocellulose (NC) is one such material which has reinforcing ability and has natural binding properties. Conventional wood adhesive uses petrochemical-based binders and additives. Inclusion of nanocellulose in wood adhesive could drastically reduce the dependency on non-renewable petroleum sources. Even though wood adhesive uses NC for improving mechanical properties of the adhesive, usage is restricted because of its inability to enhance tackiness and adhesion compared with petrochemicals. Availability of free hydroxyl groups and feasibility for modification can be a potential way for functionalization of this nanomaterial. To improve adhesion properties and to make nanocellulose act as a functional filler, the crosslinking approach can be a possible solution. Enhancement of thermal properties with improved thermal degradation, water barrier properties of crosslinked films and enhanced mechanical properties especially in crosslinked poly (vinyl alcohol) (PVA) matrix, which is one of the binders for wood adhesive discussed in this review paper proves the potential applicability of crosslinked NC. Hence by inclusion of NC in wood adhesive and crosslinking with the binder, both mechanical and performance properties are expected to enhance which will create a new world and possibilities for the bio-based eco-friendly wood adhesives. In this review paper, we have reviewed the crosslinking of nanocellulose to enhance the performance of wood adhesives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.