Prepared by the LSST Science Collaborations, with contributions from the LSST Project. PrefaceMajor advances in our understanding of the Universe over the history of astronomy have often arisen from dramatic improvements in our ability to observe the sky to greater depth, in previously unexplored wavebands, with higher precision, or with improved spatial, spectral, or temporal resolution. Aided by rapid progress in information technology, current sky surveys are again changing the way we view and study the Universe, and the next-generation instruments, and the surveys that will be made with them, will maintain this revolutionary progress. Substantial progress in the important scientific problems of the next decade (determining the nature of dark energy and dark matter, studying the evolution of galaxies and the structure of our own Milky Way, opening up the time domain to discover faint variable objects, and mapping both the inner and outer Solar System) all require wide-field repeated deep imaging of the sky in optical bands.The wide-fast-deep science requirement leads to a single wide-field telescope and camera which can repeatedly survey the sky with deep short exposures. The Large Synoptic Survey Telescope (LSST), a dedicated telecope with an effective aperture of 6.7 meters and a field of view of 9.6 deg 2 , will make major contributions to all these scientific areas and more. It will carry out a survey of 20,000 deg 2 of the sky in six broad photometric bands, imaging each region of sky roughly 2000 times (1000 pairs of back-to-back 15-sec exposures) over a ten-year survey lifetime.The LSST project will deliver fully calibrated survey data to the United States scientific community and the public with no proprietary period. Near real-time alerts for transients will also be provided worldwide. A goal is worldwide participation in all data products. The survey will enable comprehensive exploration of the Solar System beyond the Kuiper Belt, new understanding of the structure of our Galaxy and that of the Local Group, and vast opportunities in cosmology and galaxy evolution using data for billions of distant galaxies. Since many of these science programs will involve the use of the world's largest non-proprietary database, a key goal is maximizing the usability of the data. Experience with previous surveys is that often their most exciting scientific results were unanticipated at the time that the survey was designed; we fully expect this to be the case for the LSST as well.The purpose of this Science Book is to examine and document in detail science goals, opportunities, and capabilities that will be provided by the LSST. The book addresses key questions that will be confronted by the LSST survey, and it poses new questions to be addressed by future study. It contains previously available material (including a number of White Papers submitted to the ASTRO2010 Decadal Survey) as well as new results from a year-long campaign of study and evaluation. This book does not attempt to be complete; there are many ...
Using Spitzer Space Telescope photometric observations of the eclipsing, interacting binary WZ Sge, we have discovered that the accretion disk is far more complex than previously believed. Our 4.5 and 8 micron time series observations reveal that the well known gaseous accretion disk is surrounded by an asymmetric disk of dusty material with a radius approximately 15 times larger than the gaseous disk. This dust ring contains only a small amount of mass and is completely invisible at optical and near-IR wavelengths, hence consisting of "dark matter". We have produced a model dust ring using 1 micron spherical particles with a density of 3 g/cm 3 and with a temperature profile ranging from 700-1500K. Our discovery about the accretion disk structure and the presence of a larger, outer dust ring have great relevance for accretion disks in general, including those in other interacting binary systems, pre-main sequence stars, and active galaxies.
Aims. We present optical spectra of the fast recurrent nova U Sco during its recent outburst, obtained within 24 h of maximum light. Methods. We use medium resolution (R ∼ 4000) spectra taken with the with the MagE spectrograph on the Magellan (Clay) 6.5 m telescope of the Las Campanas Observatories. Results. The spectrum is notable for its lack of a low ionization transient heavy element absorption system that is visible in the large majority of novae near maximum light. We suggest that this may be due to the dominance of inner Lagrangian L1 mass transfer and the absence of a circumbinary gas reservoir in this object.
Abstract. Galactic open clusters are excellent laboratories to study stellar populations that are coeval and have a common chemical composition. These clusters allow for the investigation of stellar and chemical abundance evolution, binary star systems, mass and luminosity functions, Galactic metallicity gradient, and disk structure, among other things. The Southern Open Cluster Study (socs) is a database of a select set of 24 open clusters with a broad range of ages and metallicities. It is an extension of the northern WIYN Open Cluster Study (wocs). The main goal of both studies is to obtain comprehensive photometric, spectroscopic, and astrometric information of these key open clusters. Here, we provide an overview of the socs survey and present results of the wide-field photometry on two socs clusters, NGC 3532 and Tombaugh 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.