Laboratory experiments were conducted for characterizing the performance of two commercially available instruments employed for the measurement of light absorption and scattering coefficients of aerosols at λ = 405, 532, and 781 nm (using three-wavelength photoacoustic soot spectrometer; PASS-3) as well as at 375 nm (using photoacoustic extinctiometer; PAX) based on photoacoustic spectroscopy and reciprocal nephelometry, respectively. The calibration factors (conversion factors from the readout to real values) associated with scattering measurements, estimated using gaseous molecules, mono-disperse polystyrene latex and ammonium sulfate particles, and/or polydisperse ammonium sulfate particles, are in good agreement with one another, typically within 5 %, 5 %, and 10 % at 375, 405, and 781 nm, respectively. In contrast, a significant particle size dependency was observed for the calibration factors at 532 nm, which is possibly because of a combination of differences in the polarization states of the lasers relative to the scattering planes and large truncation angle. Considering the estimated effective truncation angle, the typical uncertainties in calibration factors for scattering when measuring non-or weakly light-absorbing particles, with volume-based geometrical diameters of less than 700 nm, were estimated to be 12 %, 7 %, 34 %, and 17 %, at 375, 405, 532, and 781 nm, respectively. The typical uncertainties in the calibration factors for absorption measurements, which were determined using poly-disperse propane soot particles, were estimated to be 6 %, 4 %, 8 %, and 11 %, at 375, 405, 532, and 781 nm, respectively. The calibration factors for absorption determined by the poly-disperse soot particles at 375 and 405 nm were 48 % and 36 % smaller than those by light absorption of NO 2 molecules possibly because of NO 2 photolysis, although good agreement was observed at 532 nm. These results suggest that the photolysis effect should be taken into account when light absorption by NO 2 is used for calibration at 375 and 405 nm.
Abstract. Coincident aerosol observations of multi-axis differential optical absorption spectroscopy (MAX-DOAS), cavity ring-down spectroscopy (CRDS), lidar, and sky radiometer were conducted in Tsukuba, Japan, on 5–18 October 2010. MAX-DOAS aerosol retrieval (for aerosol extinction coefficient and aerosol optical depth at 476 nm) was evaluated from the viewpoint of the need for a correction factor for oxygen collision complexes (O4 or O2–O2) absorption. The present study strongly supports this need, as systematic residuals at relatively high elevation angles (20 and 30°) were evident in MAX-DOAS profile retrievals conducted without the correction. However, adopting a single number for the correction factor (fO4 = 1.25) for all of the elevation angles led to systematic overestimation of near-surface aerosol extinction coefficients, as reported in the literature. To achieve agreement with all three observations, we limited the set of elevation angles to ≤10° and adopted an elevation-angle-dependent correction factor for practical profile retrievals with scattered light observations by a ground-based MAX-DOAS. With these modifications, we expect to minimize the possible effects of temperature-dependent O4 absorption cross section and uncertainty in DOAS fit on an aerosol profile retrieval, although more efforts are encouraged to quantitatively identify a physical explanation for the need of a correction factor.
Abstract. Coincident aerosol observations of Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS), Cavity Ring Down Spectroscopy (CRDS), lidar, and sky radiometer were conducted in Tsukuba, Japan on 5–18 October 2010. MAX-DOAS aerosol retrieval (for aerosol extinction coefficient and aerosol optical depth at 476 nm) was evaluated from the viewpoint of the need for a correction factor for oxygen collision complexes (O4 or O2-O2) absorption. The present study strongly supports this need, as systematic residuals at relatively high elevation angles (20 and 30°) were evident in MAX-DOAS profile retrievals conducted without the correction. However, adopting a single number for the correction factor (fO4 = 1.25) for all of the elevation angles led to systematic overestimation of near-surface aerosol extinction coefficients, as reported in the literature. To achieve agreement with all three observations, we limited the set of elevation angles to ≤ 10° and adopted an elevation-angle-dependent correction factor for practical profile retrievals with scattered light observations by a ground-based MAX-DOAS. With these modifications, we expect to minimize the possible effects of temperature-dependent O4 absorption cross section and uncertainty in DOAS fit on an aerosol profile retrieval, although more efforts are encouraged to quantitatively identify a physical explanation for the need of a correction factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.