G protein-coupled receptors (GPCRs) are the largest family of proteins involved in transmembrane signal transduction and are actively studied because of their suitability as therapeutic small-molecule drug targets. Agonist activation of GPCRs almost invariably results in the receptor being desensitized. One of the key events in receptor desensitization is the sequestration of the receptor from the cell surface into acidic intracellular endosomes. Therefore, a convenient, generic, and noninvasive monitor of this process is desirable. A novel, pH-sensitive, red-excited fluorescent dye, CypHer 5, was synthesized. This dye is non-fluorescent at neutral pH and is fluorescent at acidic pH. Anti-epitope antibodies labeled with this dye were internalized in an agonist concentration- and time-dependent manner, following binding on live cells to a range of GPCRs that had been modified to incorporate the epitope tags in their extracellular N-terminal domain. This resulted in a large signal increase over background. When protonated, the red fluorescence of CypHer 5 provides a generic reagent suitable for monitoring the internalization of GPCRs into acidic vesicles. This approach should be amenable to the study of many other classes of cell surface receptors that also internalize following stimulation.
More relevant and reliable preclinical cardiotoxicity tests are required to improve drug safety and reduce the cost of drug development. Current in vitro testing strategies predominantly take the form of functional assays to predict the potential for drug-induced ECG abnormalities in vivo. Cardiotoxicity can also be structural in nature, so a full and efficient assessment of cardiac liabilities for new chemical entities should account for both these phenomena. As well as providing a more appropriate nonclinical model for in vitro cardiotoxicity testing, human stem cell-derived cardiomyocytes offer an integrated system to study drug impact on cardiomyocyte structure as well as function. Employing human embryonic stem cell-derived cardiacmyocytes (hESC-CMs) on 3 assay platforms with complementary insights into cardiac biology (multielectrode array assay, electrophysiology; impedance assay, cell movement/beating; and high content analysis assay, subcellular structure) we profiled a panel of 13 drugs with well characterized cardiac liabilities (Amiodarone, Aspirin, Astemizole, Axitinib, AZT, Bepridil, Doxorubicin, E-4031, Mexiletine, Rosiglitazone, Sunitinib, Sibutramine, and Verapamil). Our data show good correlations with previous studies and reported clinical observations. Using multiparameter phenotypic profiling techniques we demonstrate the dynamic relationship that exists between functional and structural toxicity, and the benefits of this more holistic approach to risk assessment. We conclude by showing for the first time how the advent of transparent MEA plate technology enables functional and structural cardiotoxic responses to be recorded from the same cell population. This approach more directly links changes in morphology of the hESC-CMs with recorded electrophysiology signatures, offering even greater insight into the wide range of potential drug impacts on cardiac physiology, with a throughput that is more amenable to early drug discovery.
~~~-~~~cathepin D processed htuxan big endcrthelinl_s into ~~d~th~~~~-~k~ fragments bat did not appear to generate e~~~~~~~~~ under the conditions empioyed. By contrast, human catbepsin E specifica& cleaved human big endotbelin into endothehn,st and the C-terminal fragment under identical conditions but did not degrade either product farther.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.