Ultrasonic elasticity imaging enables visualization of soft tissue deformation for medical diagnosis. Our aim is to understand the role of flow-dependent and flow-independent viscoelastic mechanisms in the response of biphasic polymeric media, including biological tissues and hydrogels, to low-frequency forces. Combining the results of confined and unconfined compression experiments on gelatin hydrogels with finite element analysis (FEA) simulations of the experiments, we explore the role of polymer structure, loading, and boundary conditions in generating contrast for viscoelastic features. Feature estimation is based on comparisons between the biphasic poro-elastic and biphasic poro-viscoelastic (BPVE) material models, where the latter adds the viscoelastic response of the solid polymer matrix. The approach is to develop a consistent FEA material model (BPVE) from confined compression-stress relaxation measurements to extract the strain dependent hydraulic permeability variation and cone-plate rheometer measurements to obtain the flow-independent viscoelastic constants for the solid-matrix phase. The model is then applied to simulate the unconfined compression experiment to explore the mechanics of hydropolymers under conditions of quasi-static elasticity imaging. The spatiotemporal distributions of fluid and solid-matrix behavior within the hydrogel are studied to propose explanations for strain patterns that arise during the elasticity imaging of heterogeneous media.
The viscoelastic response of hydropolymers, which include glandular breast tissues, may be accurately characterized for some applications with as few as 3 rheological parameters by applying the Kelvin-Voigt fractional derivative (KVFD) modeling approach. We describe a technique for ultrasonic imaging of KVFD parameters in media undergoing unconfined, quasi-static, uniaxial compression. We analyze the KVFD parameter values in simulated and experimental echo data acquired from phantoms and show that the KVFD parameters may concisely characterize the viscoelastic properties of hydropolymers. We then interpret the KVFD parameter values for normal and cancerous breast tissues and hypothesize that this modeling approach may ultimately be applied to tumor differentiation.
Flaw indications have been found in some dissimilar metal nozzle to stainless steel piping welds in pressurized water reactors (PWR) throughout the world. The nozzle welds usually involve welding ferritic (often A508) nozzles to 304/316 stainless steel pipe using Alloy 182/82 weld metal. Due to an unexpected aging issue with the weld metal, the weld becomes susceptible to a form of corrosion cracking referred to as primary water stress corrosion cracking (PWSCC). It can occur if the temperature is high enough (usually >300C) and the water chemistry in the PWR is typical of operating plants. This paper represents one of a series of papers which examine the propensity for cracking in a particular operating PWR in the UK. This paper represents an examination of the weld residual stress distributions which occur in four different size nozzles in the plant. Companion papers in this conference examine crack growth and PWSCC mitigation efforts related to this plant. British Energy (BE) has developed a work program to assess the possible impact of PWSCC on dissimilar metal welds in the primary circuit of the Sizewell ‘B’ pressurized water reactor. This effort has included the design and manufacture of representative PWR safety/relief valve nozzle welds both with and without a full structural weld overlay, multiple residual stress measurements on both mock-ups using the deep hole and incremental deep hole methods, and a number of finite element weld residual stress simulations of both the mock-ups and equivalent plant welds. This work is summarized in companion papers [1–3]. Here, the detailed weld residual stress predictions for these nozzles are summarized. The weld residual stresses in a PWR spray nozzle, safety/relief nozzle, surge nozzle, and finally a steam generator hot-leg nozzle are predicted here using an axis-symmetric computational weld solution process. The residual stresses are documented and these feed into a natural crack growth analysis provided in a companion PVP 2010-25162 paper [1]. The solutions are made using several different constitutive models: kinematic hardening, isotropic hardening, and a mixed hardening model. Discussion will be provided as to the appropriateness of the constitutive model for multi-pass DM weld modeling. In addition, the effect of including or neglecting the post-weld heat treatment process, which typically occurs after the buttering process in a DM weld, is presented. During operation the DM welds in a PWR experience temperatures in excess of 300°C. The coefficient of thermal expansion (CTE) mismatch between the three materials, particularly the higher CTE in the stainless steel, affects the stresses at operating temperature. The K-weld geometry used in the steam generator nozzles in this plant combines with CTE mis-match effects to result in service stresses somewhat different from V-weld groove cases.
The Atucha II nuclear power plant is a unique pressurized heavy water reactor being constructed in Argentina. The original plant design was by KWU in the 1970’s using the then German methodology of break preclusion, which assumed that the largest break-opening area would be 10-percent of the cross-sectional area of the largest pipe diameter. That philosophy was used for the design of the emergency core cooling system in the 1970’s. The plant construction was halted for several decades, but a recent need for power was the driver for restarting the construction. The construction is progressing with initial start-up in 2011. Since the 10-percent of the cross-sectional area is a smaller ECCS design requirement than the normally assumed double-ended-guillotine break, the safety evaluation of the plant for beyond design basis seismic loading of the nuclear plant was a regulatory requirement. This overview paper describes a Robust LBB Evaluation that was conducted in great detail to assess the safety aspects of the piping system under beyond design basis seismic loading and the implications to the ECCS. Key aspects involved: • Static and dynamic material property testing, • Determination of weld residual stresses, • Determination of crack sizes that might evolve by worst case SCC growth rates under weld residual stresses and normal operating stresses, • Determination of leakage rates as a function of time with the upper-bounding crack growth rates, • Development of seismic hazard curves for the site, • Development of FE models of the containment building and primary NSSS system within the building, • Determination of normal operating stresses, SSE stresses and 10−6 seismic stresses using worst case soil foundation assumptions, • Evaluation of flaw behavior for circumferential cracks using the shapes from the natural crack growth. • Evaluation of margins on the critical flaw size and times to leakage, and • Standard LBB analyses, as well as Transition Break Size evaluations. The key result from this effort was that even with all the normal operating plus 10−6 seismic event loading, the pipe system behaved more like it was displacement-controlled than load-controlled. The displacement-controlled behavior made the pipe much more flaw tolerant, and it was found that a DEGB was not possible because the flaw could never reach the critical flaw size without greatly surpassing the leakage and water make-up capacity of the plant. Since there are many details in this multi-year effort, only the key points will be summarized in this paper while other details will be the topics of other papers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.