In methanotrophic bacteria, methane is oxidized to methanol by the enzyme methane monooxygenase (MMO). The soluble MMO enzyme complex from Methylocystis sp. strain M also oxidizes a wide range of aliphatic and aromatic compounds, including trichloroethylene. In this study, heterologous DNA probes from the type II methanotroph Methylosinus trichosporium OB3b were used to isolate soluble MMO (sMMO) genes from the type II methanotroph Methylocystis sp. strain M. sMMO genes from strain M are clustered on the chromosome and show a high degree of identity with the corresponding genes from Methylosinus trichosporium OB3b. Sequencing and phylogenetic analysis of the 16S rRNA gene from Methylocystis sp. strain M have confirmed that it is most closely related to the type II methanotroph Methylocystis parvus OBBP, which, unlike Methylocystis sp. strain M, does not possess an sMMO. A similar phylogenetic analysis using the pmoA gene, which encodes the 27-kDa polypeptide of the particulate MMO, also places Methylocystis sp. strain M firmly in the genus Methylocystis. This is the first report of isolation and characterization of methane oxidation genes from methanotrophs of the genus Methylocystis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.