Among several functional monomers, 10-methacryloxydecyl dihydrogen phosphate (10-MDP) bonded most effectively to hydroxyapatite (HAp). However, more hydrolysis-resistant functional monomers are needed to improve bond durability. Here, we investigated the adhesive potential of the novel fluoro-carbon functional monomer 6-methacryloxy-2,2,3,3,4,4,5,5-octafluorohexyl dihydrogen phosphate (MF8P; Kuraray Noritake Dental Inc., Tokyo, Japan) by studying its molecular interaction with powder HAp using solid-state nuclear magnetic resonance ((1)H MAS NMR) and with dentin using x-ray diffraction (XRD) and by characterizing its interface ultrastructure at dentin using transmission electron microscopy (TEM). We further determined the dissolution rate of the MF8P_Ca salt, the hydrophobicity of MF8P, and the bond strength of an experimental MF8P-based adhesive to dentin. NMR confirmed chemical adsorption of MF8P onto HAp. XRD and TEM revealed MF8P_Ca salt formation and nano-layering at dentin. The MF8P_Ca salt was as stable as that of 10-MDP; MF8P was as hydrophobic as 10-MDP; a significantly higher bond strength was recorded for MF8P than for 10-MDP. In conclusion, MF8P chemically bonded to HAp. Despite its shorter size, MF8P possesses characteristics similar to those of 10-MDP, most likely to be associated with the strong chemical bond between fluorine and carbon. Since favorable bond strength to dentin was recorded, MF8P can be considered a good candidate functional monomer for bonding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.