Contemporary quantum leap on functional characterization of Protein Tyrosine Phosphatase (PTP) superfamily provides an incipient perspective on regulating signal transduction. PTPs are required in the regulation of several cellular processes; especially under stressed and pathogenic conditions leading to sundry human diseases. Concrete inhibition of PTP by oxyanions and active-site directed inhibitors (alkylating agents) may provide implements for human disease treatment involving them. The physiological paramountcy for the advancement of Protein Tyrosine Phosphatase, Non-receptor Type 1 (PTP1B) -predicated therapeutics is a prominent target for diabetes and inordinate corpulence treatment. PTPs are exhilarating quarry for active-site-mediated inhibitors generation. There, proneness to oxidation often create problem on high throughput screens, further the propensity for highly charged potent inhibitors, like non-hydrolysable pTyr mimetics, test with reverence to bioavailability. Subsequent preliminary concerns about specificity and quandaries with deference to hydrophilicity of phosphormimetics, promising successes attained by structure-predicated drug design, mainly the one exploit identical surface topology circumventing the catalytic pocket of each PTP. In PTP1B, it was found that a particular pTyr binding site could be habituated to succeed highly concrete bidentate inhibitors that bind both sites. This conventional approach can avail us to target highly categorical and efficacious inhibitors. Tyrosine phosphorylation increases 1-2% of total protein phosphorylation in tumorigenic transformation or magnification factor simulation essential for a controlled cellular event. This event is controlled by two molecular switches of enzymes protein tyrosine kinase and protein tyrosine phosphatase. Eccentric tyrosine phosphorylation is considered as one of the hallmarks of cancer. PTP has been recommended as next generation drug targets and a sum of PTP have been embroiled in sundry human disease, like cancer. The catalytic mechanism of PTP was demystified by site-directed mutagenesis then kinetic analyses with structural information. They have loss/ gain of function in cancer signaling events leading to dearth of inhibitors to control gain of function including modification of loss of function of PTP cognate genes. This review is about the consequentiality of tyrosine phosphatase enzyme and its role in the mundane cellular event and how it modifies the active site to agonise substrate and alter its action ultimately leading to tumorigenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.