Low earth orbit (LEO) satellite constellations could play an important role in future mobile communication networks due to their characteristics, such as global coverage and low propagation delays. However, because of the non-stationarity of the satellites, a call may be subjected to handovers, which can be cell or satellite handovers. Quite many techniques have been proposed in the literature dealing with the cell handover issue. In this paper, a satellite handover procedure is proposed, that investigates and exploits the partial satellite diversity (namely, the existing common coverage area between contiguous satellites) in order to provide an efficient handover strategy, based always on a tradeoff of the blocking and forced termination probabilities for a fair treatment of new and handover calls. Three different criteria were examined for the selection of a satellite. Each one of them could be applied either to new or handover calls, therefore we investigated nine different service schemes. A simulation tool was implemented in order to compare the different service schemes and simulation results are presented at the end of the paper.
Notwithstanding the limited commercial success of the first narrowband Low Earth Orbit (LEO) satellite systems, the interest of the scientific community in this type of systems has been revived on the basis of the current trend toward the migration to all IP-based services. LEO systems can play a pivotal role in providing services to areas where there is no substantial terrestrial infrastructure. Above all, LEO satellite systems can be used as backbone networks to interconnect autonomous systems worldwide. Such an approach provides flexibility in managing the resulting integrated network infrastructure and supporting innovative applications. In this context, routing data from the source all the way to the destination constitutes a daunting challenge. In this paper, a location-assisted on-demand routing (LAOR) protocol is proposed and evaluated. The proposed protocol introduces for the first time in satellite systems the concept of on-demand routing. However, its implementation is tailored to the requirements imposed by the characteristics of the topology of LEO satellite systems. The performance of the LAOR protocol is assessed for different link-cost metrics and compared to the one of centralized routing protocols proposed in the literature so far. Simulation studies further document and confirm the positive characteristics of the proposed protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.