This paper applies He's Energy balance method (EBM) to study periodic solutions of strongly nonlinear systems such as nonlinear vibrations and oscillations. The method is applied to two nonlinear differential equations. Some examples are given to illustrate the effectiveness and convenience of the method. The results are compared with the exact solution and the comparison showed a proper accuracy of this method. The method can be easily extended to other nonlinear systems and can therefore be found widely applicable in engineering and other science.
Abstract-This paper deals with Approximate Analytical Solutions to nonlinear oscillations of a conservative, non-natural, single-degreeof-freedom system with odd nonlinearity. By extending the Variational approach proposed by He, we established approximate analytical formulas for the period and periodic solution.To illustrate the applicability and accuracy of the method, two examples are presented: (i) the motion of a rigid rod rocking back and forth on the circular surface without slipping, and (ii) Cubic-Quintic Duffing Oscillators. Comparison of the result which is obtained by this method with the obtained result by the Exact solution reveals that the He's Variational approach is very effective and convenient and can be easily extended to other nonlinear systems and can therefore be found widely applicable in engineering and other sciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.