In recent years, due to the rapid progress of various technologies, wireless computer networks have developed. However, the activities of the security threats and attackers affect the data communication of these technologies. So, to protect the network against these security threats, an efficient IDS (Intrusion Detection System) is presented in this paper. Namely, optimized long short-term memory (OLSTM) network with a stacked auto-encoder (SAE) network is proposed as an IDS system. Using SAE, significant features are extracted from the databases such as input NSL-KDD database and the UNSW-NB15 database. Then extracted features are given as input to the optimized LSTM which is used as an intrusion identification system. To enhance the effectiveness of the LSTM, we present the pigeon optimization algorithm (POA). Using this algorithm, weight parameters of the LSTM are chosen optimally. Finally, the proposed IDS model decides whether the input packets are intruded or not. The results confirm that the proposed IDS model surpasses the previous machine learning-based IDS models in terms of correctness, F1-score and G mean.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.