SummaryThe two-component regulatory system CitA /CitB is essential for induction of the citrate fermentation genes in Klebsiella pneumoniae. CitA represents a membrane-bound sensor kinase consisting of a periplasmic domain¯anked by two transmembrane helices, a linker domain and the conserved kinase or transmitter domain. A fusion protein (MalE±CitAC) composed of the maltose-binding protein and the CitA kinase domain (amino acids 327±547) showed constitutive autokinase activity and transferred the g-phosphate group of ATP to its cognate response regulator CitB. The autokinase activity of CitA was abolished by an H350L exchange, and phosphorylation of CitB was inhibited by a D56N exchange, indicating that H-350 and D-56 represent the phosphorylation sites of CitA and CitB respectively. In the presence of ATP, CitB±D56N formed a stable complex with MalE±CitAC.
Streptomyces viridochromogenes Tü494 produces the antibiotic phosphinothricin tripeptide (PTT). In the postulated biosynthetic pathway, one reaction, the isomerization of phosphinomethylmalate, resembles the aconitase reaction of the tricarboxylic acid (TCA) cycle. It was speculated that this reaction is carried out by the corresponding enzyme of the primary metabolism (C. J. Thompson and H. Seto, p. 197-222, in L. C. Vining and C. Stuttard, ed., Genetics and Biochemistry of Antibiotic Production, 1995). However, in addition to the TCA cycle aconitase gene, a gene encoding an aconitase-like protein (the phosphinomethylmalate isomerase gene, pmi) was identified in the PTT biosynthetic gene cluster by Southern hybridization experiments, using oligonucleotides which were derived from conserved amino acid sequences of aconitases. The deduced protein revealed high similarity to aconitases from plants, bacteria, and fungi and to iron regulatory proteins from eucaryotes. Pmi and the S. viridochromogenes TCA cycle aconitase, AcnA, have 52% identity. By gene insertion mutagenesis, a pmi mutant (Mapra1) was generated. The mutant failed to produce PTT, indicating the inability of AcnA to carry out the secondary-metabolism reaction. A His-tagged protein (Hispmi*) was heterologously produced in Streptomyces lividans. The purified protein showed no standard aconitase activity with citrate as a substrate, and the corresponding gene was not able to complement an acnA mutant. This indicates that Pmi and AcnA are highly specific for their respective enzymatic reactions.The structurally identical antibiotics phosphinothricin tripeptide (PTT) and bialaphos are produced by Streptomyces viridochromogenes and by Streptomyces hygroscopicus (4, 18), respectively. They consist of two molecules, L-alanine and one molecule of the unusual amino acid phosphinothricin (PT). A biosynthetic pathway for bialaphos, consisting of at least 13 steps, was postulated following analysis of nonproducing S. hygroscopicus mutants (summarized in reference 35). Several enzymes were purified, and various genes of the PTT biosynthetic gene cluster were mapped in S. hygroscopicus (35), as well as in S. viridochromogenes (1,12,28,32). It was shown that the respective genes and enzymes were highly similar (up to 80%) on the DNA and amino acid levels (29,39,40). As the genetic organizations of the two clusters are basically identical, it has been concluded that the biosynthesis in both producing strains proceeds in the same way.The biosynthetic steps 6, 7, and 8 were found to be similar to the citrate synthase, aconitase, and isocitrate dehydrogenase reactions of the tricarboxylic acid (TCA) cycle, respectively (Fig. 1). In contrast to the step 6 reaction, for which a specific PTT biosynthetic gene and protein were identified (15), the subsequent steps, especially the isomerization of phosphinomethylmalate in step 7, were speculated to be catalyzed by the enzymes of the primary metabolism (35). Three facts supported this. First, inhibition of aconitase resulted i...
The sensor kinase CitA and the response regulator CitB of Klebsiella pneumoniae form the paradigm of a subfamily of bacterial two-component regulatory systems that are capable of sensing tri- or dicarboxylates in the environment and then induce transporters for the uptake of these compounds. We recently showed that the separated periplasmic domain of CitA, termed CitAP (encompasses residues 45-176 supplemented with an N-terminal methionine residue and a C-terminal hexahistidine tag), is a highly specific citrate receptor with a K(d) of 5.5 microM at pH 7. To identify positively charged residues involved in binding the citrate anion, each of the arginine, lysine, and histidine residues in CitAP was exchanged for alanine, and the resulting 17 muteins were analyzed by isothermal titration calorimetry (ITC). In 12 cases, the K(d) for citrate was identical to that of wild-type CitAP or slightly changed (3.9-17.2 microM). In one case (R98A), the K(d) was 6-fold decreased (0.8 microM), whereas in four cases (R66A, H69A, R107A, and K109A) the K(d) was 38- to >300-fold increased (0.2 to >1 mM). The secondary structure of the latter five proteins in their apo-form as deduced from far-UV circular dichroism (CD) spectra did not differ from the apo-form of wild-type CitAP; however, all of them showed an increased thermostability. Citrate increased the melting point (T(m)) of wild-type CitAP and mutein R98A by 6.2 and 9.5 degrees C, respectively, but had no effect on the T(m) of the four proteins with disturbed binding. Three of the residues important for citrate binding (R66, H69, and R107) are highly conserved in the CitA subfamily of sensor kinases, indicating that they might be involved in ligand binding by many of these sensor kinases.
For the CitA-CitB (DpiB-DpiA) two-component signal transduction system from Escherichia coli, three diverse functions have been reported: induction of the citrate fermentation genes citCDEFXGT, repression of the regulator gene appY, and destabilization of the inheritance of iteron-containing plasmids such as pSC101. This poses the question of the principal biological role of this system. Here it is shown that the periplasmic domain of the E. coli sensor kinase CitA functions as a high-affinity citrate receptor. Two CitA derivatives were purified by affinity chromatography and subjected to binding studies using isothermal titration calorimetry (ITC). One of them, termed CitA215MBP, comprised the N-terminal part of CitA (amino acid residues 1-215), including the two transmembrane helices, and was fused to the amino terminus of the E. coli maltose-binding protein lacking its signal peptide. The second CitA derivative, designated CitAP(Ec), encompassed only the periplasmic domain (amino acid residues 38-177). CitA215MBP bound citrate at 25 degrees C with a K(d) of 0.3 microM and a binding stoichiometry of up to 0.9 in 50 mM sodium phosphate buffer, pH 7. Binding was driven by the enthalpy change (Delta H of -95.7 kJ mol(-1)), whereas the entropy change was not favorable for binding ( T Delta S of -58.6 kJ mol(-1)). ITC experiments with CitAP(Ec) yielded similar K(d) values for citrate (0.15-1.0 microM). Besides citrate, also isocitrate ( K(d) approximately tricarballylate ( K(d) approximately t not malate were bound by CitAP(Ec). The results favor the assumption that the primary biological function of the CitA-CitB system is the regulation of the citrate fermentation genes.
The tricarboxylic acid (TCA) cycle aconitase gene acnAfrom Streptomyces viridochromogenes Tü494 was cloned and analyzed. AcnA catalyzes the isomerization of citrate to isocitrate in the TCA cycle, as indicated by the ability of acnA to complement the aconitase-deficient Escherichia coli mutant JRG3259. An acnA mutant was unable to develop aerial mycelium and to sporulate, resulting in a bald phenotype. Furthermore, the mutant did not produce the antibiotic phosphinothricin tripeptide, demonstrating that AcnA also affects physiological differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.