The reduction of tidal volume during mechanical ventilation has been shown to reduce mortality of patients with acute respiratory distress syndrome, but epithelial cell injury can still result from mechanical stresses imposed by the opening of occluded airways. To study these stresses, a fluid-filled parallel-plate flow chamber lined with epithelial cells was used as an idealized model of an occluded airway. Airway reopening was modeled by the progression of a semi-infinite bubble of air through the length of the channel, which cleared the fluid. In our laboratory's prior study, the magnitude of the pressure gradient near the bubble tip was directly correlated to the epithelial cell layer damage (Bilek AM, Dee KC, and Gaver DP III. J Appl Physiol 94: 770-783, 2003). However, in that study, it was not possible to discriminate the stress magnitude from the stimulus duration because the bubble propagation velocity varied between experiments. In the present study, the stress magnitude is modified by varying the viscosity of the occlusion fluid while fixing the reopening velocity across experiments. This approach causes the stimulus duration to be inversely related to the magnitude of the pressure gradient. Nevertheless, cell damage remains directly correlated with the pressure gradient, not the duration of stress exposure. The present study thus provides additional evidence that the magnitude of the pressure gradient induces cellular damage in this model of airway reopening. We explore the mechanism for acute damage and also demonstrate that repeated reopening and closure is shown to damage the epithelial cell layer, even under conditions that would not lead to extensive damage from a single reopening event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.