Communicated by J. L. LionsResume. Le but de cet article est d'6tudier l'homog6n6isation du probl~me de valeurs propres pour des op6rateurs eUiptiques. On prend comme exemple un probl~me de second-ordre avec des conditions de Dirichlet homog~nes au bord. Le Th6or~me principal d'homog6n6isation dit que le m~me op~rateur qui homog6n6ise le probl~me stationnaire correspondant sert 6galement & homog~n6iser ce probl~me de valeurs propres et que la structure des valeurs et vecteurs propres est, grosso modo, pr6serv~e. On propose des formules pour calculer les correcteurs de premier et second ordre pour les valeurs propres et on obtient des estimations d'erreur. Ces r6sultats sont appliqu6s ~ un cas particulier off les coefficients s6nt p6riodiques et des r6sultats numbriques sont pr6sent6s. On indique des extensions possibles du point de vue conditions aux limites, et des probl6mes de quatri~me ordre.Abstract. The aim of this paper is to study the homogenization of elliptic eigenvalue problems, with a second order homogeneous Dirichlet problem as an example. The main homogenization theorem states that the same operator which serves to homogenize the corresponding static problem works for the eigenvalue problem as well and that the structure of eigenvalues and eigenvectors is in some sense preserved. Formulae for first and second order correctors for eigenvalues are proposed and error estimates are obtained. These results are applied to the case of coefficients with a periodic structure and a simple numerical example is presented. Extensions to other types of boundary conditions and to higher order equations are indicated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.