<div class="section abstract"><div class="htmlview paragraph">Engines equipped with Dynamic Skip Fire (DSF) technology generate low frequency and high amplitude excitations that could reduce vehicles drive quality if not properly calibrated. The excitation frequency of each firing pattern depends on its length and on the rotational speed of the engine. Excitation amplitude mainly depends on the requested engine torque by the driver. During the calibration process, the torque characteristics that results in production level of noise, vibration, and harshness (NVH), must be identified, for each firing pattern and engine speed. This process is quite time consuming but necessary.</div><div class="htmlview paragraph">To improve our process, a novel machine learning technique is utilized to accelerate the calibration effort. The idea is to automate the vibration rating procedure such that given the relevant power-train parameters, a vibration rating associated with that driving condition can be predicted. This process is divided into two <span class="xref">(2)</span> prediction models. The first model is a multiple additive regression trees that predicts the seat accelerometer data based on the various engine and vehicle parameters. The predicted seat accelerometer data is used as an input to the second machine learning model which correlates, along with other relevant engine and vehicle parameters, to a final vibration rating score. The results indicate that using this machine learning approach can significantly improve capability of automating the DSF calibration process delivering commercial NVH performance.</div></div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.