Protein complex formation depends on the interplay between preorganization and flexibility of the binding epitopes involved. The design of epitope mimetics typically focuses on stabilizing a particular bioactive conformation, often without considering conformational dynamics, which limits the potential of peptidomimetics against challenging targets such as transcription factors. We developed a peptide‐derived inhibitor of the NF‐Y transcription factor by first constraining the conformation of an epitope through hydrocarbon stapling and then fine‐tuning its flexibility. In the initial set of constrained peptides, a single non‐interacting α‐methyl group was observed to have a detrimental effect on complex stability. Biophysical characterization revealed how this methyl group affects the conformation of the peptide in its bound state. Adaption of the methylation pattern resulted in a peptide that inhibits transcription factor assembly and subsequent recruitment to the target DNA.
Enzymes are of central importance to many biotechnological and biomedical applications. However, for many potential applications, the required conditions impede enzyme folding and therefore function. The enzyme Sortase A is a transpeptidase that is widely used to perform bioconjugation reactions with peptides and proteins. Thermal and chemical stress impairs Sortase A activity and prevents its application under harsh conditions, thereby limiting the scope for bioconjugation reactions. Here, we report the stabilization of a previously reported, activityenhanced Sortase A, which suffered from particularly low thermal stability, using the in situ cyclization of proteins (INCYPRO) approach. After introduction of three spatially aligned solventexposed cysteines, a triselectrophilic cross-linker was attached. The resulting bicyclic INCYPRO Sortase A demonstrated activity both at elevated temperature and in the presence of chemical denaturants, conditions under which both wild-type Sortase A and the activity-enhanced version are inactive.
Aminopeptidase N (APN, CD13) is a trans-membrane ectopeptidase involved in many crucial cellular functions. Besides its role as a peptidase, APN also mediates signal transduction, and is involved in the activation of Matrix Metalloproteinases (MMPs). MMPs function in tissue remodeling within the extracellular space and are therefore involved in many human diseases such as fibrosis, rheumatoid arthritis, tumor angiogenesis and metastasis as well as viral infections. However, the exact mechanism that leads to APN driven MMP activation is unclear. It was previously shown that extracellular 14-3-3 adapter proteins binding APN induces the transcription of MMPs. As a first step, we sought to identify potential 14‑3‑3 binding sites in the APN sequence. We constructed a set of phosphorylated peptides derived from APN to probe for interactions. We identified and characterized a canonical 14-3-3 binding site (site 1) within the flexible, structurally unresolved N-terminal APN region using direct binding Fluorescence Polarization (FP) assays and thermodynamic analysis (ITC). In addition, we identified a secondary, non-canonical binding site (site 2), which enhances the binding affinity in combination with site 1 by many orders of magnitude. Finally, we solved crystal structures of 14‑3‑3σ bound to mono- and bis‑phosphorylated APN derived peptides, which revealed atomic details of the binding mode of mono- and bivalent 14-3-3 interactions. Therefore, our findings shed some light on the first steps of APN-mediated MMP activation and opens the field for further investigation of this important signaling pathway.
Protein complex formation depends on the interplay between preorganization and flexibility of the binding epitopes involved. The design of epitope mimetics typically focuses on stabilizing a particular bioactive conformation, often without considering conformational dynamics, which limits the potential of peptidomimetics against challenging targets such as transcription factors. We developed a peptide‐derived inhibitor of the NF‐Y transcription factor by first constraining the conformation of an epitope through hydrocarbon stapling and then fine‐tuning its flexibility. In the initial set of constrained peptides, a single non‐interacting α‐methyl group was observed to have a detrimental effect on complex stability. Biophysical characterization revealed how this methyl group affects the conformation of the peptide in its bound state. Adaption of the methylation pattern resulted in a peptide that inhibits transcription factor assembly and subsequent recruitment to the target DNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.