Dosage compensation modifies the chromatin of X-linked genes to assure equivalent expression in sexes with unequal X chromosome dosage. In Drosophila dosage compensation is achieved by increasing expression from the male X chromosome. The ribonucleoprotein dosage compensation complex (DCC) binds hundreds of sites along the X chromosome and modifies chromatin to facilitate transcription. Loss of roX RNA, an essential component of the DCC, reduces expression from X-linked genes. Surprisingly, loss of roX RNA also reduces expression from genes situated in proximal heterochromatin and on the small, heterochromatic fourth chromosome. Mutation of some, but not all, of the genes encoding DCC proteins produces a similar effect. Reduction of roX function suppresses position effect variegation (PEV), revealing functional alteration in heterochromatin. The effects of roX mutations on heterochromatic gene expression and PEV are limited to males. A sex-limited role for the roX RNAs in autosomal gene expression was unexpected. We propose that this reflects a difference in the heterochromatin of males and females, which serves to accommodate the heterochromatic Y chromosome present in the male nucleus. roX transcripts may thus participate in two distinct regulatory systems that have evolved in response to highly differentiated sex chromosomes: compensation of X-linked gene dosage and modulation of heterochromatin.
The ribonucleoprotein Male Specific Lethal (MSL) complex is required for X chromosome dosage compensation in Drosophila melanogaster males. Beginning at 3 h of development the MSL complex binds transcribed X-linked genes and modifies chromatin. A subset of MSL complex proteins, including MSL1 and MSL3, is also necessary for full expression of autosomal heterochromatic genes in males, but not females. Loss of the non-coding roX RNAs, essential components of the MSL complex, lowers the expression of heterochromatic genes and suppresses position effect variegation (PEV) only in males, revealing a sex-limited disruption of heterochromatin. To explore the molecular basis of this observation we examined additional proteins that participate in compensation and found that MLE, but not Jil-1 kinase, contributes to heterochromatic gene expression. To determine if identical regions of roX RNA are required for dosage compensation and heterochromatic silencing, we tested a panel of roX1 transgenes and deletions and find that the X chromosome and heterochromatin functions are separable by some mutations. Chromatin immunoprecipitation of staged embryos revealed widespread autosomal binding of MSL3 before and after localization of the MSL complex to the X chromosome at 3 h AEL. Autosomal MSL3 binding was dependent on MSL1, supporting the idea that a subset of MSL proteins associates with chromatin throughout the genome during early development. The broad localization of these proteins early in embryogenesis supports the idea of direct action at autosomal sites. We postulate that this may contribute to the sex-specific differences in heterochromatin that we, and others, have noted.
Organisms with dimorphic sex chromosomes suffer a potentially lethal imbalance in gene expression in one sex. Addressing this fundamental problem can be considered the first, and most essential, aspect of sexual differentiation. In the model organisms Drosophila, Caenorhabditis elegans, and mouse, expression from X-linked genes is modulated by selective recruitment of chromatin-modifying complexes to X chromatin. In both flies and mammals, large noncoding RNAs have a central role in recruitment and activity of these complexes. This review will summarize current knowledge of the function of the noncoding roX genes in this process in Drosophila. Identification of an autosomal function for the roX RNAs raises intriguing questions about the origin of the modern dosage compensation system in flies.
No abstract
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.