Absolute rate constants for the free-radical-induced degradation of trichloronitromethane (TCNM, chloropicrin) were determined using electron pulse radiolysis and transient absorption spectroscopy. Rate constants for hydroxyl radical, *OH, and hydrated electron, e(aq)-, reactions were (4.97 +/- 0.28) x 10(7) M(-1) s(-1) and (2.13 +/- 0.03) x 10(10) M(-1) s(-1), respectively. It appears that the *OH adds to the nitro-group, while the e(aq)- reacts via dissociative electron attachment to give two carbon centered radicals. The mechanisms of these free radical reactions with TCNM were investigated, using 60Co gamma irradiation at various absorbed doses, measuring the disappearance of TCNM and the appearance of the product nitrate and chloride ions. The rate constants and mechanistic data were combined in a kinetic computer model that was used to describe the major free radical pathways for the destruction of TCNM in solution. These data are applicable to other advanced oxidation/reduction processes.
Advanced oxidation/reduction processes (AORPs) are an alternative water treatment that is becoming more widely utilized. Our radiation-chemistry based studies are being used to develop a fundamental understanding of AOP treatment options, and are divided into three complementary types of contaminants; disinfection by-products (DBPs), emerging pollutants of concern (EPoCs), and natural organic matter (NOM). More than 600 DBPs have been identified, and one class that appears to have severe potential adverse health effects is the halonitromethanes (HNMs). Of the nine HNMs, trichloronitromethane (chloropicrin) is the most common, with levels up to 180 nM in US drinking waters. EPoCs are of interest because of their biological activity at low concentrations in water and while the initial focus was on endocrine disruptor chemicals (EDCs) this class has now been expanded to include many other recalcitrant chemicals such as hormones, antibiotics, industrial contaminants, and health care products. Natural organic matter is one of the most common radical scavengers in natural waters and therefore may adversely affect AOPs. Our approach is to study NOM both directly and using model compounds thought to be representative of structural components of this complex material.
Halonitromethanes (HNMs) are byproducts formed through ozonation and chlorine/ chloramine disinfection processes in drinking waters that contain dissolved organic matter and bromide ions. These species occur at low concentration but have been determined to have high cytotoxicity and mutagenicity and therefore may represent a human health hazard. In this study, we have investigated the chemistry involved in the mineralization of HNMs to nonhazardous inorganic products through the application of advanced oxidation and reduction processes. We have combined measured absolute reaction rate constants for the reactions of chloronitromethane, bromonitromethane, and dichloronitromethane with the hydroxyl radical and the hydrated electron with a kinetic computer model in an attempt to elucidate the reaction pathways of these HNMs. The results are compared to measurements of stable products resulting from steady-state (60)Co gamma-irradiations of the same compounds. The model predicted the decomposition of the parent compounds and ingrowth of chloride and bromide ions with excellent accuracy, but the prediction of the total nitrate ion concentration was slightly in error, reflecting the complexity of nitrogen oxide species reactions in irradiated solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.