Magnetic resonance (MR) images obtained in 35 patients with intramedullary spinal tumors were reviewed. Hypointense areas on both T1- and T2-weighted images were seen within or around eight tumors, all of which were in the cervical cord. Hypointensity at the tumor margin was seen in seven cases. Hypointensity within the tumor was seen in two cases. (One case had both types of hypointensity). In seven surgically confirmed cases, hypointensity at the tumor margin was found to be a relatively firm pseudocapsule, and hypointensity within the tumor corresponded to intratumoral hematoma. All of the tumors with hypointensity were ependymomas at histologic examination. When MR imaging shows an intramedullary tumor with hypointensity at the tumor margin, it is suggestive, but not pathognomonic, of an ependymoma.
The urethra position may shift due to the presence/absence of the catheter. Our proposed post-urinationmagnetic resonance imaging (PU-MRI) technique is possible to identify the urethra without catheter. We aimed to verify the inter-operator difference in contouring the urethra by PU-MRI. The mean values of the evaluation indices of dice similarity coefficient, mean slice-wise Hausdorff distance, and center coordinates were 0.93, 0.17 mm, and 0.36 mm for computed tomography, and 0.75, 0.44 mm, and 1.00 mm for PU-MRI. Therefore, PU-MRI might be useful for identifying the prostatic urinary tract without using a urethral catheter.Clinical trial registration: Hokkaido University Hospital for Clinical Research (018-0221).
In positron emission tomography (PET) imaging, image quality correlates with the injected [18F]-fluorodeoxyglucose (FDG) dose and acquisition time. If image quality improves from short-acquisition PET images via the super-resolution (SR) deep learning technique, it is possible to reduce the injected FDG dose. Therefore, the aim of this study was to clarify whether the SR deep learning technique could improve the image quality of the 50%-acquisition-time image to the level of that of the 100%-acquisition-time image. One-hundred-and-eight adult patients were enrolled in this retrospective observational study. The supervised data were divided into nine subsets for nested cross-validation. The mean peak signal-to-noise ratio and structural similarity in the SR-PET image were 31.3 dB and 0.931, respectively. The mean opinion scores of the 50% PET image, SR-PET image, and 100% PET image were 3.41, 3.96, and 4.23 for the lung level, 3.31, 3.80, and 4.27 for the liver level, and 3.08, 3.67, and 3.94 for the bowel level, respectively. Thus, the SR-PET image was more similar to the 100% PET image and subjectively improved the image quality, as compared to the 50% PET image. The use of the SR deep-learning technique can reduce the injected FDG dose and thus lower radiation exposure.
Highlights US-IMPT can potentially reduce the risk of genitourinary toxicities. The urethral NTCP value in US-IMPT is significantly lower than in the clinical plan. TCP for CTV did not differ significantly between the clinical and US-IMPT plans.
In urethra-sparing radiation therapy, prostatic urinary tract visualization is important in decreasing the urinary side effect. A methodology has been developed to visualize the prostatic urinary tract using post-urination magnetic resonance imaging (PU-MRI) without a urethral catheter. This study investigated whether the combination of PU-MRI and super-resolution (SR) deep learning models improves the visibility of the prostatic urinary tract. We enrolled 30 patients who had previously undergone real-time-image-gated spot scanning proton therapy by insertion of fiducial markers. PU-MRI was performed using a non-contrast high-resolution two-dimensional T2-weighted turbo spin-echo imaging sequence. Four different SR deep learning models were used: the enhanced deep SR network (EDSR), widely activated SR network (WDSR), SR generative adversarial network (SRGAN), and residual dense network (RDN). The complex wavelet structural similarity index measure (CW-SSIM) was used to quantitatively assess the performance of the proposed SR images compared to PU-MRI. Two radiation oncologists used a 1-to-5 scale to subjectively evaluate the visibility of the prostatic urinary tract. Cohen’s weighted kappa (k) was used as a measure of agreement of inter-operator reliability. The mean CW-SSIM in EDSR, WDSR, SRGAN, and RDN was 99.86%, 99.89%, 99.30%, and 99.67%, respectively. The mean prostatic urinary tract visibility scores of the radiation oncologists were 3.70 and 3.53 for PU-MRI (k = 0.93), 3.67 and 2.70 for EDSR (k = 0.89), 3.70 and 2.73 for WDSR (k = 0.88), 3.67 and 2.73 for SRGAN (k = 0.88), and 4.37 and 3.73 for RDN (k = 0.93), respectively. The results suggest that SR images using RDN are similar to the original images, and the SR deep learning models subjectively improve the visibility of the prostatic urinary tract.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.