To determine whether herpes simplex virus type 1 (HSV-1) infection causes oxidative stress and lipid peroxidation in cultured neural cells, mouse P19 embryonal carcinoma cells were differentiated into cells with neural phenotypes (P19N cells) by retinoic acid and were then infected with HSV-1. Cellular levels of reactive oxygen species (ROS) and the release of lipid peroxidation by-products into the tissue culture medium were then measured by the generation of fluorescent markers hydroxyphenyl fluorescein and a stable chromophore produced by lipid peroxidation products, malondialdehyde (MDA) and hydroxyalkenals (4-HAEs; predominantly 4-hydroxy-2-nonenal [HNE]), respectively. HSV-1 infection increased ROS levels in neural cells as early as 1 h post infection (p.i.) and ROS levels remained elevated at 24 h p.i. This viral effect required viral entry and replication as heat- and ultraviolet light-inactivated HSV-1 were ineffective. HSV-1 infection also was associated with increased levels of MDA/HAE in the culture medium at 2 and 4 h p.i., but MDA/HAE levels were not different from those detected in mock infected control cultures at 1, 6, and 24 h p.i. HSV-1 replication in P19N cells was inhibited by the antioxidant compound ebselen and high concentrations of HNE added to the cultures, but was increased by low concentrations of HNE. These findings indicate that HSV-1 infection of neural cells causes oxidative stress that is required for efficient viral replication. Furthermore, these observations raise the possibility that soluble, bioactive lipid peroxidation by-products generated in infected neural cells may be important regulators of HSV-1 pathogenesis in the nervous system.
HSV-1 entry into HCjE cells is a pH-dependent process that is aided by targeted virus travel on filopodia. HCjE cells express all three major entry receptors, with nectin-1 and HVEM playing the predominant role in mediating entry.
To better understand melanoma resistance to herpes simplex virus type 1 (HSV-1)-mediated oncolysis, traditional two-dimensional (2D) cultures and extracellular matrix (ECM) containing three-dimensional (3D) cultures of OCM1 and C918 uveal melanoma cells were infected with an HSV-1 strain that expresses the green fluorescent protein (GFP) marker during replication. Although 2D cultures were completely destroyed within a few days of HSV-1 inoculation, viable GFP-negative tumor cells remained detectable in 3D cultures for several weeks. Tumor cells with increased resistance to HSV-1 included cells that formed vasculogenic mimicry patterns and multicellular spheroids and cells that invaded Matrigel individually. Mechanisms of tumor resistance against HSV-1 in the 3D environment included impaired virus spread in the ECM and ECM-mediated inhibition of viral replication after viral entry into tumor cells. Observations also suggested that HSV-1 established quiescent infection in some tumor cells present in multicellular spheroids and that this could revert to productive viral infection when the tumor growth pattern changed. These findings indicate that 3D tumor cell cultures can be used to identify distinct tumor cell populations with increased resistance to HSV-1 and to explore mechanisms of ECM-mediated tumor resistance to oncolytic virotherapy.
Multiple Sclerosis (MS) is a chronic disease, but in rare fulminant cases rapid progression may lead to death shortly after diagnosis. Currently there is no diagnostic test to predict disease course. The aim of this study was to identify potential biomarkers/proteins related to rapid progression. We present the case history of a 15-year-old male MS patient. Cerebrospinal fluid (CSF) was taken at diagnosis and at the time of rapid progression leading to the patient’s death. Using isobaric tag labeling and nanoflow liquid chromatography in conjunction with matrix assisted laser desorption/ionization time of flight tandem mass spectrometry we quantitatively analyzed the protein content of two CSF samples from the patient with fulminant MS as well as one relapsing-remitting (RR) MS patient and one control headache patient, whose CSF analysis was normal. Seventy-eight proteins were identified and seven proteins were found to be more abundant in both fulminant MS samples but not in the RR MS sample compared to the control. These proteins are involved in the immune response, blood coagulation, cell proliferation and cell adhesion. In conclusion, in this pilot study we were able to show differences in the CSF proteome of a rapidly progressing MS patient compared to a more typical clinical form of MS and a control subject.
HVEM is expressed in the cornea and TG and therefore may serve as an HSV entry receptor in these tissues. Furthermore, these findings raise the possibility that changes in HVEM expression following ocular HSV-1 infection can modulate HSV spread and infection-induced inflammation in the cornea and TG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.