17-Allylamino-demethoxy geldanamycin (17-AAG) inhibits the chaperone association of heat shock protein 90 (hsp90) with the heat shock factor-1 (HSF-1), which induces the mRNA and protein levels of hsp70. Increased hsp70 levels inhibit death receptor and mitochondria-initiated signaling for apoptosis. Here, we show that ectopic overexpression of hsp70 in human acute myelogenous leukemia HL-60 cells (HL-60/hsp70) and high endogenous hsp70 levels in Bcr-Abl-expressing cultured CML-BC K562 cells confers resistance to 17-AAG-induced apoptosis. In HL-60/hsp70 cells, hsp70 was bound to Bax, inhibited 17-AAG-mediated Bax conformation change and mitochondrial localization, thereby inhibiting the mitochondria-initiated events of apoptosis. Treatment with 17-AAG attenuated the levels of phospho-AKT, AKT, and c-Raf but increased hsp70 levels to a similar extent in the control HL-60/ Neo and HL-60/hsp70 cells. Pretreatment with 17-AAG, which induced hsp70, inhibited 1-B-D-arabinofuranosylcytosine or etoposide-induced apoptosis in HL-60 cells. Stable transfection of a small interfering RNA (siRNA) to hsp70 completely abrogated the endogenous levels of hsp70 and blocked 17-AAG-mediated hsp70 induction, resulting in sensitizing K562/siRNA-hsp70 cells to 17-AAG-induced apoptosis. This was associated with decreased binding of Bax to hsp70 and increased 17-AAG-induced Bax conformation change. 17-AAGmediated decline in the levels of AKT, c-Raf, and Bcr-Abl was similar in K562 and K562/siRNA-hsp70 cells. Cotreatment with KNK437, a benzylidine lactam inhibitor of hsp70 induction and thermotolerance, attenuated 17-AAG-mediated hsp70 induction and increased 17-AAG-induced apoptosis and loss of clonogenic survival of HL-60 cells. Collectively, these data indicate that induction of hsp70 attenuates the apoptotic effects of 17-AAG, and abrogation of hsp70 induction significantly enhances the antileukemia activity of 17-AAG. (Cancer Res 2005; 65(22): 10536-44)
AMN107 (Novartis Pharmaceuticals, Basel, Switzerland) has potent in vitro and in vivo activity against the unmutated and most common mutant forms of Bcr-Abl. Treatment with the histone deacetylase inhibitor LBH589 (Novartis) depletes Bcr-Abl levels. We determined the effects of AMN107 and/or LBH589 in Bcr-Abl–expressing human K562 and LAMA-84 cells, as well as in primary chronic myelogenous leukemia (CML) cells. AMN107 was more potent than imatinib mesylate (IM) in inhibiting Bcr-Abl tyrosine kinase (TK) activity and attenuating p-STAT5, p-AKT, Bcl-xL, and c-Myc levels in K562 and LAMA-84 cells. Cotreatment with LBH589 and AMN107 exerted synergistic apoptotic effects with more attenuation of p-STAT5, p-ERK1/2, c-Myc, and Bcl-xL and increases in p27 and Bim levels. LBH589 attenuated Bcr-Abl levels and induced apoptosis of mouse pro-B BaF3 cells containing ectopic expression of Bcr-Abl or the IM-resistant, point-mutant Bcr-AblT315I and Bcr-AblE255K. Treatment with LBH589 also depleted Bcr-Abl levels and induced apoptosis of IM-resistant primary human CML cells, including those with expression of Bcr-AblT315I. As compared with either agent alone, cotreatment with AMN107 and LBH589 induced more loss of cell viability of primary IM-resistant CML cells. Thus, cotreatment with LBH589 and AMN107 is active against cultured or primary IM-resistant CML cells, including those with expression of Bcr-AblT315I.
Purpose: We determined the effects of vorinostat [suberoylanilide hydroxamic acid (SAHA)] and/or dasatinib, a dual Abl/Src kinase (tyrosine kinase) inhibitor, on the cultured human (K562 and LAMA-84) or primary chronic myelogenous leukemia (CML) cells, as well as on the murine pro-B BaF3 cells with ectopic expression of the unmutated and kinase domain-mutant forms of Bcr-Abl. Experimental Design: Following exposure to dasatinib and/or vorinostat, apoptosis, loss of clonogenic survival, as well as the activity and levels of Bcr-Abl and its downstream signaling proteins were determined. Results: Treatment with dasatinib attenuated the levels of autophosphorylated Bcr-Abl, p-CrkL, phospho-signal transducer and activator of transcription 5 (p-STAT5), p-c-Src, and p-Lyn; inhibited the activity of Lyn and c-Src; and induced apoptosis of the cultured CML cells. Combined treatment of cultured human CML and BaF3 cells with vorinostat and dasatinib induced more apoptosis than either agent alone, as well as synergistically induced loss of clonogenic survival, which was associated with greater depletion of Bcr-Abl, p-CrkL, and p-STAT5 levels. Cotreatment with dasatinib and vorinostat also attenuated the levels of Bcr-AblE255K and Bcr-AblT315I and induced apoptosis of BaF3 cells with ectopic expression of the mutant forms of Bcr-Abl. Finally, cotreatment of the primary CML cells with vorinostat and dasatinib induced more loss of cell viability and depleted Bcr-Abl or Bcr-AblT315I, p-STAT5, and p-CrkL levels than either agent alone. Conclusions: As shown here, the preclinical in vitro activity of vorinostat and dasatinib against cultured and primary CML cells supports the in vivo testing of the combination in imatinib mesylate^sensitive and imatinib mesylate^resistant CML cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.