The present status of the JENDL high-energy file is reported. The recent version (referred to as JENDL/HE-2007) contains neutron and proton cross section data for energies up to 3 GeV for 107 nuclides over the wide mass range from H to Am. The newly evaluated data for 41 nuclides have been added to the first version (JENDL/HE-2004) along with some revisions. The JENDL/HE-2007 includes neutron total cross sections, nucleon elastic scattering cross sections and angular distributions, nonelastic cross sections, production cross sections and double-differential cross sections of secondary light particles (n, p, d, t, 3 He, α, and π) and gamma-rays, isotope production cross sections, and fission cross sections in the ENDF-6 format. The evaluations were performed on the basis of experimental data, nuclear model calculations, and systematics based on measurements. The evaluated cross sections are compared with available experimental data and the other evaluations. Some results of benchmark tests with MCNPX codes are shown.
No abstract
Abstract. JAEA has provided an evaluated nuclear data library JENDL and nuclear application codes such as MARBLE, SRAC, MVP and PHITS. These domestic codes have been widely used in many universities and industrial companies in Japan. However, we sometimes find problems in imported processing systems and need to revise them when the new JENDL is released. To overcome such problems and immediately process the nuclear data when it is released, JAEA started developing a new nuclear data processing system, FRENDY in 2013. This paper describes the outline of the development of FRENDY and both its capabilities and performances by the analyses of criticality experiments. The verification results indicate that FRENDY properly generates ACE files.
Emphases in recent JT-60 experiments are placed on 1)lower-hybrid (LH) current drive characteristics with a multi-junction type launcher and 2 ) the confinement study with combination of neutral beam injection, LH current drive and pellet injection. The new multi-junction LH launcher provides a 2 . 7 x 1 0 1 9 m -3 and Ip=1-1.7 MA.Volt-sec saving of -2volt-sec was demonstrated by 2 sec long, 1.6MW LHCD during the plasma current ramp of 0.4MA/s.A broad radial distribution of high energy electron current and -30% reduction in sawtooth inversion radius were obtained by high N I I (-2.5) LH injection. In order to fully suppress the sawtooth activity, low NII (-1.3) injection was found to be more effective, in which up to 1.8 sec sawtooth-free phase was obtained by 2MW LHCD for lOMW NB heating of Ip=I.SMA discharge, Improved energy confinement has been obtained with hydrogen pellet injection. Energy confinement time was enhanced up to 40% relative to usual gas fuelled discharges. The discharge has a strongly peaked electron density profile with ne(O)/
From June to October 1987, JT-60 achieved fusion product(ne(0) .r~*.Ti(Oj ) of 6 ~1 0 ' ~ m 3 . k e V . s with hydrogen plasma at plasma current of 2.8 to 3.1 MA with neutral beam power of -20 MW. The central electron density of 1 . 3 ~1 0 2 0 m-3 was obtained at plasma current of 3 MA with 13-20 MW neutral beam power and the confinement time reached 0.14-0.18 s. It is found that an offset linear scaling law like the Shimomura-Odajima scaling on confinement time will be able to reproduce experimental data better than that of the Goldston type scaling. With low beam energy injection, -40 keV, confinement degradation was found. Many short periods (0.05-0.1 s) of H-mode phase were found in outside X-point divertor discharges with NB or NB+RF(LH or IC) heating power above 16 MW. However, improvement in energy confinement time was limited to 10 %. The ballooning/interchange stability analysis were JT-60 TEAM also made for the outside X-point divertor equilibrium in connection with H-phase capability. Heating power of 9.5 MW and 1.9 MW was obtained by LHRF, ICRF injection, respectively. In combined LHRF and NB heating, the incremental energy confinement time of 0.064 s was obtained, which is the same level of that of NB heating only. In combined NB and on-axis ICRF heating of low ne discharge, an incremental energy confinement time of 0.21 s was obtained, which is three times as long as those of NB or ICRF heating only. It was also observed that high energy beam ions were accelerated by ICRF in the central region of the plasma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.