Thermoreflectance imaging provides the capability to map temperature spatially on the submicrometer scale by using a light source and CCD camera for data acquisition. The ability to achieve such spatial resolution and observe detailed features is influenced by optical diffraction. By combining diffraction from both the sample and substrate, a model is developed to determine the intensity of the thermoreflectance signal. This model takes into account the effective optical distance, sample width, wavelength, signal phase shift, and reflectance intensity, while showing qualitative and quantitative agreement with experimental thermoreflectance images from 1 and 10 μm wide gold lines at two wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.