In this work, a sensitive and robust vacuum ultra-violet (VUV) single-photon ionization (SPI) ion trap time-of-flight mass spectrometer (VUV-SPI-IT-TOFMS) for on-line, realtime monitoring of chlorinated organic compounds in waste incineration flue gas has been newly developed. The fragment-free SPI technique with 121.6-nm VUV lamp irradiated by a microwave generator and the quadrupole ion trap to accumulate and select analyte ions were combined with a reflectron time-of-flight mass spectrometer to detect chlorinated organic compounds at trace level. This measuring system was tuned up to detect dioxins precursors with the aim at an application to monitoring trace level toxic substances in flue gases from incinerator furnaces. As a result, this technology has made it possible to analyze trichlorobenzene (T3CB), a dioxin precursor, in 18 s with a sensitivity of 80 ng/m3-N (10 pptv) using the selective accumulation of analyte substances and separation of interfering substances in the ion trap. Moreover, the first field test of the continuous monitoring T3CB in an actual waste incineration flue gas had been done for 7 months. The results show that this system has an exceeding robust performance and is able to maintain the high sensitivity in analyzing T3CB for long months of operation.
The absorption cross sections and the differential elastic-scattering cross sections of antiprotons on carbon, aluminum, and copper nuclei were systematically measured at six beam momenta between 470 and 880 MeV/c. From these data, the antiproton-nucleus optical potential was derived for the first time.
This paper presents the first combined measurement of the double-differential muon neutrino and antineutrino charged-current cross sections with no pions in the final state on hydrocarbon at the off-axis near detector of the T2K experiment. The data analyzed in this work comprise 5.8 × 10 20 and 6.3 × 10 20 protons on target in neutrino and antineutrino mode respectively, at a beam energy peak of 0.6 GeV. Using the two measured cross sections, the sum, difference, and asymmetry were calculated with the aim of better understanding the nuclear effects involved in such interactions. The extracted measurements have been compared with the prediction from different Monte Carlo generators and theoretical models showing that the difference between the two cross sections have interesting sensitivity to nuclear effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.