This paper presents a study of electrowetting of ionic liquids (ILs) under AC voltages, where nine different ILs (including mono-, di-, and tricationic varieties) with three different AC frequencies (60 Hz, 1 kHz, 10 kHz) were experimentally investigated. The main foci of this study are (i) an investigation of AC frequency dependence on the electrowetting of ILs; (ii) obtaining theoretical relationships between the relevant factors that explain the experimentally achieved frequency dependence; and (iii) a systematic comparison of electrowetting of ILs using AC vs DC voltage fields. The frequency of the AC voltage was found to be directly related to the apparent contact angle change (Deltatheta) of the ILs. This relationship was further analyzed and explained theoretically. The electrowetting properties of ILs under AC voltages were compared to that under DC voltages. All tested ILs showed greater apparent contact angle changes with AC voltage conditions than with DC voltage conditions. The effect of structure and charge density also was examined. Electrowetting reversibility under AC voltage conditions was studied for few ILs. Finally, the physical properties and AC electrowetting properties of ILs were measured and tabulated.
The two best aromatic-functionalized cyclofructan chiral stationary phases, R-naphthylethyl-carbamate cyclofructan 6 (RN-CF6) and dimethylphenyl-carbamate cyclofructan 7 (DMP-CF7), were synthesized and evaluated by injecting various classes of chiral analytes. They provided enantioselectivity toward a broad range of compounds, including chiral acids, amines, metal complexes, and neutral compounds. It is interesting that they exhibited complementary selectivities and the combination of two columns provided enantiomeric separations for 43% of the test analytes. These extensive chromatographic results provided useful information about method development of specific analytes, and also gave some insight as to the enantioseparation mechanism.
Four new ionic liquids (IL) were prepared and bonded onto 5-microm silica particles for use as adsorbent in solid-phase microextraction (SPME). Two ILs contained styrene units that allowed for polymerization and higher carbon content of the bonded silica particles. Two polymeric ILs differing by their anion were used to prepare two SPME fibers that were used in both headspace and immersion extractions and compared to commercial fibers. In both sets of experiments, ethyl acetate was used as an internal standard to take into account adsorbent volume differences between the fibers. The polymeric IL fibers are very efficient in headspace SPME for short-chain alcohols. Immersion SPME also can be used with the IL fibers for short-chain alcohols as well as for polar and basic amines that can be extracted at pH 11 without damage to the IL-bonded silica particles. The sensitivities of the two IL fibers differing by the anion were similar. Their efficacy compares favorably to that of commercial fibers for polar analytes. The mechanical strength and durability of the polymeric IL fibers were excellent.
High performance liquid chromatography (HPLC) and capillary electrophoresis (CE) were used to examine the enantiomeric separation of a series of 17 racemic tetrahydrobenzimidazole analytes. These compounds were prepared as part of a synthetic program directed towards a select group of pyrrole-imidazole alkaloids. This group of natural products has a unique framework of pyrrole- and guanidine-containing fused rings which can be constructed through the intermediacy of a tetrahydrobenzimidazole scaffold. Several bonded cyclodextrin- (both native and derivatized) and derivatized cyclofructan-based chiral stationary phases were evaluated for their ability to separate these racemates via HPLC. Similarly, several cyclodextrin derivatives and derivatized cyclofructan were evaluated for their ability to separate this set of chiral compounds via CE. Enantiomeric selectivity was observed for the entire set of racemic compounds using HPLC with resolution values up to 3.0. Among the 12 different CSPs, enantiomeric recognition was most frequently observed with the Cyclobond RN and LARIHC CF6-P, while the Cyclobond DMP yielded the greatest number of baseline separations. Fifteen of the analytes showed enantiomeric recognition in CE with resolution values as high as 5.0 and hydroxypropyl-γ-cyclodextrin was the most effective chiral additive.
The volatile and polar solvent 1,4-dioxane has recently been reported as a contaminant of ground and surface waters, establishing the need to determine this substance in drinking water. This investigation established that 1,4-dioxane can be determined in water by various techniques including direct aqueous injection (DAI) gas chromatography (GC) and purge and trap GC-mass spectrometry (MS). Purge and trap GC-MS is limited by 1,4-dioxane's poor purge efficiency, resulting in detection limits up to 100 times greater than the efficiently purged volatile organic compounds. To attain the sensitivity required for drinking water monitoring, a method based on continuous liquid-liquid extraction with dichloromethane was developed. Isotope dilution was more accurate and reproducible than quantification with external standards, and the improvement in precision led to a lower method detection limit, 0.2 microgram L-1, using a quadrupole ion trap instrument in the electron ionization mode. Isotope dilution accuracy approached 100% in ppb determinations. Isotopic dilution quantification was also possible using a non-selective GC detector owing to the high efficiency of capillary GC columns that resolve the deuterium-labeled solvent from the natural isotopes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.