The cardiovascular related diseases can however be controlled through earlier detection as well as risk evaluation and prediction. In this paper the application of deep learning methods for CVD diagnosis using ECG is addressed and also discussed the deep learning with Python. A detailed analysis of related articles has been conducted. The results indicate that convolutional neural networks are the most widely used deep learning technique in the CVD diagnosis. This research paper looks into the advantages of deep learning approaches that can be brought by developing a framework that can enhance prediction of heart related diseases using ECG.
Bayi berat lahir rendah akan mengalami banyak masalah karena belum siapnya hidup diluar kandungan. Hal tersebut menyebabkan angka kesakitan dan angka kematian pada bayi meningkat. Data mining dapat digunakan untuk mengetahui penilaian kemampuan bertahan lebih dini pada bayi berat lahir rendah. Jaringan syaraf tiruan backpropagation sebagai teknik dari data mining dapat digunakan untuk menganalisis data sehingga dapat memprediksi kemampuan bertahan pada bayi berat lahir rendah. Pada paper ini dibangun suatu sistem berbasis jaringan syaraf tiruan backpropagation untuk menilai tinggi atau rendahnya kemampuan bertahan pada bayi berat lahir rendah. Dari sistem yang dibuat memiliki tingkat keakuratan untuk menilai kemampuan bertahan bayi berat lahir rendah sebesar 83,33%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.