SWEETINGHAM, KELLY A. Auxiliary Signal Design for Fault Detection in Nonlinear Systems. (Under the direction of Professor S. L. Campbell). Recently, research has developed in the area of active fault detection and model identification algorithms for linear systems. These algorithms compute an auxiliary input signal which guarantees fault detection, assuming a bounded noise. This dissertation addresses the question of when the previous linear theory can be applied to nonlinear systems. Several case studies are presented to verify that linearizations can in fact produce results in the nonlinear case. Two results are proven about the use of linearizations. The first result gives a parameter β to scale the entire problem. Using this parameter, the scaled auxiliary signal, along with a scaled noise bound, will guarantee fault detection in the nonlinear problem. The second result shows how to compute the acceptable noise bound for the nonlinear problem using the exact auxiliary signal from the linearized problem. Also presented is a computational study to verify these two results. Two secondary projects are also presented in this dissertation. The first is a comparison of two different linear algorithms used to compute the optimal auxiliary signal. The second is a port of one of the existing pieces of fault detection software into Matlab. This new software is included, as well as a discuss of the complications of the port.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.