Infection by hepatitis B virus (HBV) accounts for 50-80% of hepatocellular carcinoma (HCC) development worldwide, in which the HBV-encoded X protein (HBx) has critical role in the induction of carcinogenesis. Several studies have shown that thyroid hormone (TH) suppresses HCC development and protects hepatocytes from HBx-induced damage, thus it is of interest to examine whether TH can protect hepatocytes from HBx-induced carcinogenesis. By treating HBx- transgenic mice with or without TH, we confirmed the protective effects of TH on HBx-induced hepatocarcinogenesis, which was achieved via reduction of reactive oxygen species (ROS) inflicted DNA damage. We further found that TH induced biogenesis of mitochondria (MITO) and autophagy of HBx-targeted MITO simultaneously, consequently leading to suppression of HBx-promoted ROS and carcinogenesis. Using microarray data analysis, this protective effect of TH was found to be mediated via activation of PTEN-induced kinase 1 (PINK1) in hepatocytes. PINK1, in turn, activated and recruited Parkin, an E3 ligase, to ubiquitinate MITO-associated HBx protein and trigger selective mitophagy. The pathological significance of the TH/PINK1 pathway in liver protection was confirmed by the concomitant decrease in expression of both TR and PINK1 in matched HCC tumor tissues and negatively correlated with aggressive progression of cancer and poor prognosis. Our data indicate that TH/PINK1/Parkin pathway has a critical role in protecting hepatocytes from HBx-induced carcinogenesis. Notably, several liver-targeting therapeutic derivatives of TH facilitating prevention or therapy of steatosis have been identified. Furthermore, our proof-of-concept experiments suggest that application of T constitutes an effective novel therapeutic or preventive option for HCC. Thus, the utilization of the agonists of TRs could be the meaningful strategy in liver relative diseases, ranging from simple hepatic steatosis to HCC.
Although accumulating evidence has confirmed the important roles of thyroid hormone (T(3)) and its receptors (TRs) in tumor progression, the specific functions of TRs in carcinogenesis remain unclear. In the present study, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) was directly upregulated by T(3) in TR-overexpressing hepatoma cell lines. TRAIL is an apoptotic inducer, but it can nonetheless trigger non-apoptotic signals favoring tumorigenesis in apoptosis-resistant cancer cells. We found that TR-overexpressing hepatoma cells treated with T(3) were apoptosis resistant, even when TRAIL was upregulated. This apoptotic resistance may be attributable to simultaneous upregulation of Bcl-xL by T(3), because (1) knockdown of T(3)-induced Bcl-xL expression suppressed T(3)-mediated protection against apoptosis, and (2) overexpression of Bcl-xL further protected hepatoma cells from TRAIL-induced apoptotic death, consequently leading to TRAIL-promoted metastasis of hepatoma cells. Moreover, T(3)-enhanced metastasis in vivo was repressed by the treatment of TRAIL-blocking antibody. Notably, TRAIL was highly expressed in a subset of hepatocellular carcinoma (HCC) patients, and this high-level expression was significantly correlated with that of TRs in these HCC tissues. Together, our findings provide evidence for the existence of a novel mechanistic link between increased TR and TRAIL levels in HCC. Thus, TRs induce TRAIL expression, and TRAIL thus synthesized acts in concert with simultaneously synthesized Bcl-xL to promote metastasis, but not apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.