Wall shear stress generated by blood flow may regulate the expression of fibrinolytic proteins by endothelial cells. Tissue plasminogen activator (tPA) and plasminogen activator inhibitor, type 1 (PAI-1) secretion by cultured human endothelial cells were not affected by exposure to venous shear stress (4 dynes/cm2). However, at arterial shear stresses of 15 and 25 dynes/cm2, the tPA secretion rate was 2.1 and 3.0 times greater, respectively, than the basal tPA secretion rate. PAI-1 secretion was unaffected by shear stress over the entire physiological range.
In first-passage human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (passages 13-16), exposure to gentle mechanical perturbation using a micropipette caused a transient rise in intracellular calcium concentration ([Ca2+]i). The increase in calcium concentration ([Ca2+]) occurred each time the cell was nudged. Three responses were evoked in each of 27 cells using 5 independent HUVEC harvests. Increase in [Ca2+] returned to near baseline levels within approximately 30 s. The stimulus did not cause membrane puncture, as indicated by 1) absence of rapid dye leakage, 2) regulated nature of the [Ca2+] response, 3) absence of membrane blebbing, and 4) repeatable nature of the response in the same cell. As an alternative stimulus, we created very narrow fluid streams (1- to 2-microns diam) from a pressurized pipette that generated shear stresses of approximately 0.001-0.1 dyn/cm2 on the cells. However, these low-shear streams had little effect on [Ca2+]i. The poke-induced change in [Ca2+] was not blocked by lowering extracellular [Ca2+] ([Ca2+]o; 10 microM). In the absence of [Ca2+]o, however, HUVEC did not respond to the first poke, indicating a requirement for some [Ca2+]o as a mediator of signaling. After several poke-induced responses, [Ca2+]i could still be released by caffeine (100 microM), indicating the integrity of the intracellular release mechanism(s). These studies indicate that the response of an endothelial cell to a membrane-deforming event involves a priming step utilizing [Ca2+]o, which facilitates the transient increase of [Ca2+]i.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.