The normal state temperature dependence of a metallic K3C60 phase pure film has been investigated by means of core levels and valence band photoemission, carbon K edge x-ray absorption, and electron energy loss spectroscopies and compared with that of a Mott–Hubbard insulating K4C60 film. The anomalous temperature behavior of K3C60, in the range 30 K–600 K, can be consistently interpreted considering the presence of orientational disorder of the C60 molecules together with the inhomogeneity of the conduction electron distribution at the molecular level. In particular, the changes observed in the photoemission spectra near the Fermi level, are consistent with the behavior predicted for strongly correlated metallic systems in presence of disorder. Also in the case of K4C60 we observe anomalies in the temperature dependence of core levels photoemission data. These anomalies can be explained with the freezing of the molecular motions at low temperature and point to large thermal fluctuations of the alkali atoms around their equilibrium position at high temperature.
We investigate the driving mechanism leading to charge-density-wave transition in 1T-TiSe2 single crystals. Our results show that both exciton instability and phonons cooperate to develop the charge ordered phase below 202 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.