Magnetic Resonance Image (MRI) has been used as a safe, conventional and harmless diagnostic tool. However, thermal injuries have frequently been reported during MRI scanning due to the heat generated by the reaction with the magnetic field. It is recommended that metal-containing monitoring devices such as pulse oximetry and ECG monitoring leads should be removed prior to the start of the MRI scan, but these monitoring devices are inevitably placed in children or patients in the intensive care unit who have low compliance with the scan. Since the interaction between the metal probe or wire loop of pulse oximetry and the magnetic field can result in high thermal conduction, full-thickness burn can occur over the entire body surface during the MRI examination. Several cases of thermal burns from pulse oximetry on the fingers have been reported. However, we present a case of a full-thickness burn arising left earlobe in a 2-month-old child caused by the high conduction heat from pulse oximetry metal probe.
BACKGROUND
Thermal injuries on free transferred or replanted tissues resulting from loss of sensibility are an infrequent occurrence. They require immediate and appropriate management before they progress to an irreversible condition. Although negative pressure wound therapy (NPWT) can prevent wound progression by increasing microcirculation, the inappropriate application of NPWT on complication-threatened transferred and replanted tissues can induce an adverse effect.
CASE SUMMARY
A 48-year-old woman who underwent immediate breast reconstruction with a deep inferior epigastric artery perforator free flap. While applying a heating pad directly to the flap site, she sustained a deep second to third-degree contact burn over 30% of the transferred flap on postoperative 7 d. As the necrotic changes had progressed, we applied an NPWT dressing over the burned area after en-bloc debridement of the transferred tissues on postoperative 21 d. After 4 d of NPWT application, the exposed fatty tissues of the flap changed to dry and brown-colored necrotic tissues. Upon further debridement, we noted that the wound gradually reached total necrosis with a collapsed vascular pedicle of deep inferior epigastric artery.
CONCLUSION
Although NPWT has been shown to be successful for treating various wound types, the significant risk of NPWT application in short-lasting reconstructed flap wounds after thermal injury should be reminded.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.