Reported trapping times of magnetically confined (matter) atoms range from <1 s in the first, room temperature, traps [ 18 ] to 10 to 30 minutes in cryogenic devices [ 19,20,21,22 ]. However, antimatter atoms can annihilate on background gases. Also, the loading of our trap (i.e., anti-atom production via merging of cold plasmas) is different from that of ordinary atom traps, and the loading dynamics could adversely affect the trapping and orbit dynamics. Mechanisms exist for temporary magnetic trapping of particles (e.g., in quasi-stable trapping orbits [ 23 ], or in excited internal states [ 24 ]); such particles could be short-lived with a trapping time of a few 100 ms. Thus, it is not a priori obvious what trapping time should be expected for antihydrogen. 5In this article, we report the first systematic investigations of the characteristics of trapped antihydrogen. These studies were made possible by significant advances in our trapping techniques subsequent to Ref. [ 17 ]. These developments, including incorporation of evaporative antiproton cooling[ 25 ] into our trapping operation, and optimisation of autoresonant mixing [ 26 ], resulted in up to a factor of five increase in the number of trapped atoms per attempt. A total sample of 309 trapped antihydrogen annihilation events was studied, a large increase from the previously published 38 events.Here we report trapping of antihydrogen for 1000 s, extending earlier results [ 17 ] by nearly four orders of magnitude. Further, we have exploited the temporal and spatial resolution of our detector system to perform a detailed analysis of the antihydrogen release process, from which we infer information on the trapped antihydrogen kinetic energy distribution.The ALPHA antihydrogen trap [ 27,28 ] is comprised of the superposition of a Penning trap for antihydrogen production and a magnetic field configuration that has a three-dimensional minimum in magnitude (Fig. 1). For ground-state antihydrogen, our trap well-depth is 0.54 K (in temperature units).The large discrepancy in the energy scales between the magnetic trap depth (~50 eV), and the characteristic energy scale of the trapped plasmas (a few eV) presents a formidable challenge to trapping neutral anti-atoms. antiprotons at ~100K, with radius 0.4 mm and density 7x10 7 cm -3 is prepared for mixing with positrons.Independently, the positron plasma, accumulated in a Surko-type buffer gas accumulator [ 33 ,34 ], is transferred to the mixing region, and is also radially compressed. The magnetic trap is then energized, 6 and the positron plasma is cooled further via evaporation, resulting in a plasma with a radius of 0.8 mm and containing 1x10 6 positrons at a density of 5x10 7 cm -3 and a temperature of ~40 K. The silicon vertex detector, surrounding the mixing trap in three layers (Fig. 1 a) ]. Knowledge of annihilation positions also provides sensitivity to the antihydrogen energy distribution, as we will show.In Table 1 and Fig. 2, we present the results for a series of measurements, wherein the confinemen...
We describe the design, construction and operation of a versatile dual-species Zeeman slower for both Cs and Yb, which is easily adaptable for use with other alkali metals and alkaline earths. With the aid of analytic models and numerical simulation of decelerator action, we highlight several real-world problems affecting the performance of a slower and discuss effective solutions. To capture Yb into a magneto-optical trap (MOT), we use the broad $^1S_0$ to $^1P_1$ transition at 399 nm for the slower and the narrow $^1S_0$ to $^3P_1$ intercombination line at 556 nm for the MOT. The Cs MOT and slower both use the D2 line ($6^2S_{1/2}$ to $6^2P_{3/2}$) at 852 nm. We demonstrate that within a few seconds the Zeeman slower loads more than $10^9$ Yb atoms and $10^8$ Cs atoms into their respective MOTs. These are ideal starting numbers for further experiments on ultracold mixtures and molecules.Comment: 15 pages, 15 figures, 4 tables, revtex4-
We present measurements of interspecies thermalization between ultracold samples of 133 Cs and either 174 Yb or 170 Yb. The two species are trapped in a far-off-resonance optical dipole trap and 133 Cs is sympathetically cooled by Yb. We extract effective interspecies thermalization cross sections by fitting the thermalization measurements to a kinetic model, giving σ Cs 174 Yb = (5 ± 2) × 10 −13 cm 2 and σ Cs 170 Yb = (18 ± 8) × 10 −13 cm 2 . We perform quantum scattering calculations of the thermalization cross sections and optimize the CsYb interaction potential to reproduce the measurements. We predict scattering lengths for all isotopic combinations of Cs and Yb. We also demonstrate the independent production of 174 Yb and 133 Cs Bose-Einstein condensates using the same optical dipole trap, an important step towards the realization of a quantum-degenerate mixture of the two species.The realization of ultracold atomic mixtures [1][2][3][4][5][6][7][8][9][10][11][12] has opened up the possibility of exploring new regimes of few-and many-body physics. Such mixtures have been used to study Efimov physics [13][14][15], probe impurities in Bose gases [16], and entropically cool gases confined in an optical lattice [17]. Pairs of atoms in the mixtures can be combined using magnetically or optically tunable Feshbach resonances to create ultracold molecules [18][19][20][21][22][23][24][25][26]. These ultracold molecules have a wealth of applications, such as tests of fundamental physics [27][28][29], realization of novel phase transitions [30][31][32], and the study of ultracold chemistry [33,34]. In addition, the long-range dipole-dipole interactions present between pairs of polar molecules make them useful in the study of dipolar quantum matter [35,36] and ultracold molecules confined in an optical lattice can simulate a variety of condensedmatter systems [37][38][39].Although the large majority of work on ultracold molecules has focused on bi-alkali systems, there is burgeoning interest in pairing alkali-metal atoms with divalent atoms such as Yb [40][41][42][43][44][45] or Sr [46]. The heteronuclear 2 Σ molecules formed in these systems have both an electric and a magnetic dipole moment in the ground electronic state. The extra magnetic degree of freedom opens up new possibilities for simulating a range of Hamiltonians for spins interacting on a lattice and for topologically protected quantum information processing [47].One of the challenging aspects of creating molecules in these systems is that the Feshbach resonances tend to be narrow and sparse. They are narrow because the main coupling responsible for them is the weak distance dependence of the alkali-metal hyperfine coupling, caused by the spin-singlet atom at short range [48] [48,49], and for some systems may be at impractically high magnetic fields. Amongst the various alkali-Yb combinations, CsYb has been proposed as the most favorable candidate because the high mass of Cs facilitates a higher density of bound states near threshold and its large hyperfi...
. (2016) 'Production and characterisation of a dual species magneto-optical trap of cesium and ytterbium.', Review of scientic instruments., 87 (2). 023105.Further information on publisher's website: Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
Abstract. We report a robust technique for laser frequency stabilisation that enables the reproducible loading of in excess of 10 9 Yb atoms from a Zeeman slower directly into a magneto-optical trap (MOT) operating on the 1 S 0 → 3 P 1 transition, without the need for a first stage MOT on the 1 S 0 → 1 P 1 transition. We use a simple atomic beam apparatus to generate narrow fluorescence signals on both the 399 nm 1 S 0 → 1 P 1 transition used for the Zeeman slower and the 556 nm 1 S 0 → 3 P 1 transition. We present in detail the methods for obtaining spectra with a high signalto-noise ratio and demonstrate error signals suitable for robust frequency stabilisation. Finally we demonstrate the stability and precision of our technique through sensitive measurements of the gravitational sag of the Yb MOT as a function of the intensity of the laser cooling beams, which are in good agreement with theory. These results will be important for efficient loading of the atoms into an optical dipole trap.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.