A path-integral quantization method is proposed for dynamical systems whose classical equations of motion do not necessarily follow from the action principle. The key new notion behind this quantization scheme is the Lagrange structure which is more general than the Lagrangian formalism in the same sense as Poisson geometry is more general than the symplectic one. The Lagrange structure is shown to admit a natural BRST description which is used to construct an AKSZ-type topological sigma-model. The dynamics of this sigma-model in d + 1 dimensions, being localized on the boundary, are proved to be equivalent to the original theory in d dimensions. As the topological sigma-model has a well defined action, it is path-integral quantized in the usual way that results in quantization of the original (not necessarily Lagrangian) theory. When the original equations of motion come from the action principle, the standard BV path-integral is explicitly deduced from the proposed quantization scheme. The general quantization scheme is exemplified by several models including the ones whose classical dynamics are not variational.
We observe that a wide class of higher-derivative systems admits a bounded integral of motion that ensures the classical stability of dynamics, while the canonical energy is unbounded.We use the concept of a Lagrange anchor to demonstrate that the bounded integral of motion is connected with the time-translation invariance. A procedure is suggested for switching on interactions in free higher-derivative systems without breaking their stability. We also demonstrate the quantization technique that keeps the higher-derivative dynamics stable at quantum level.The general construction is illustrated by the examples of the Pais-Uhlenbeck oscillator, higherderivative scalar field model, and the Podolsky electrodynamics. For all these models, the positive integrals of motion are explicitly constructed and the interactions are included such that keep the system stable.
We consider a generic gauge system, whose physical degrees of freedom are obtained by restriction on a constraint surface followed by factorization with respect to the action of gauge transformations; in so doing, no Hamiltonian structure or action principle is supposed to exist. For such a generic gauge system we construct a consistent BRST formulation, which includes the conventional BV Lagrangian and BFV Hamiltonian schemes as particular cases. If the original manifold carries a weak Poisson structure (a bivector field giving rise to a Poisson bracket on the space of physical observables) the generic gauge system is shown to admit deformation quantization by means of the Kontsevich formality theorem. A sigma-model interpretation of this quantization algorithm is briefly discussed.
A new model of relativistic massive particle with arbitrary spin ((m, s)-particle) is suggested. Configuration space of the model is a product of Minkowski space and two-dimensional sphere, M 6 = R 3,1 × S 2 . The system describes Zitterbewegung at the classical level. Together with explicitly realized Poincaré symmetry, the action functional turns out to be invariant under two types of gauge transformations having their origin in the presence of two Abelian first-class constraints in the Hamilton formalism. These constraints correspond to strong conservation for the phase-space counterparts of the Casimir operators of the Poincaré group. Canonical quantization of the model leads to equations on the wave functions which prove to be equivalent to the relativistic wave equations for the massive spin-s field. †
The effective equations of motion for a point charged particle taking account of radiation reaction are considered in various space-time dimensions. The divergencies steaming from the pointness of the particle are studied and the effective renormalization procedure is proposed encompassing uniformly the cases of all even dimensions. It is shown that in any dimension the classical electrodynamics is a renormalizable theory if not multiplicatively beyond d = 4. For the cases of three and six dimensions the covariant analogs of the Lorentz-Dirac equation are explicitly derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.